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  Annotation 

The article addresses the wide circle of readers with mathematical education wishing 

to examine the Fermat problem independently especially after questionable Wiles’s 

proof in 1995. The work discloses a principal mathematical error committed in the 

process of proving Fermat’s Last Theorem at that time and also presents the native 

proof belonging apparently to Fermat himself,  yet not published by him.  

             

   I. Introduction.     

   The article contains in itself basic results of the author’s future book “Fermat’s Last  

Theorem: unfinished history”, in which the following main thought is conducted: Fermat 

touched in his proposition on such depths of mathematical axiomatic, about which modern 

science does not have any conceptions till now. It looks as if Nature itself concentrated all 

its principal secrets on the Fermat theorem.  

   Let us recollect now, how this theorem is formulated. It sounds like that: two whole 

powers with one and the same whole exponent more than two cannot be equal in sum to 

another whole power with the same degree, when bases of powers are whole numbers. In 

order to understand rightly the sense and meaning of this proposition in a historical 

perspective, let us consider two independent approaches to the Fermat problem solving. 

 

II. About one principal error in proving Fermat’s Last Theorem at the end of 

the XX-th century.                     
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   In 1995 there appeared the article [5] being like a book in the size and announcing 

proof of Fermat’s Last Theorem (FLT) (for the history of the theorem and attempts to 

prove it see, for example, [4]). After this event a quantity of scientific articles and popular 

science books were published, in which the announced proof was propagandized, but no 

one of these works disclosed a principal mathematical error that crept into it even not 

through fault of the author of [5] but through some kind of strange optimism that 

enveloped mathematicians’ minds being occupied with the indicated problem and 

closely-related questions. Psychological aspects of this phenomenon were investigated in 

[4]. Here is given the detailed analysis of the occurred blunder that bears not a particular 

character but is a consequence of the wrong understanding of properties of whole 

numbered powers. As it is shown in [3], the Fermat problem is rooted in a new axiomatic 

approach to studying these properties, which has not been applied in modern science until  

now. However, the false proof of [5] stood in the way of it, leaving dummy reference 

points to specialists in number theory and taking researchers of the Fermat problem aside 

from its direct and adequate solution. The given work is undertaken to throw light on this 

situation.  

           1. Anatomy of the error committed in the course of proving FLT.  

   During very long and tiring reasoning in [5] the original Fermat proposition was 

reformulated in terms of matching Diophantine equation of degree   p  with elliptic 

curves of degree 3 (see Theorems 0.4 and 0.5 in [5]). Such matching made the authors of 

actually collective proof in [5] announce that their method and arguments led to 

definitive solution of the Fermat problem (recall that FLT did not have acknowledged 
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proofs for the case of arbitrary whole degrees of whole numbers up to the 90-th of the last 

century). The object of the given consideration is establishing mathematical incorrectness 

of the above mentioned matching and as a result of carried out analysis finding a 

principal error in the proof presented in [5].  

a) Where and what is the error ?  

   So let us follow the text of [5], where it is said on p.448 that after “an ingenious idea” 

of G.Frey a possibility of proving FLT was opened. In 1984 G.Frey suggested and 

K.Ribet proved later that an assumed elliptic curve representing a hypothetical integer 

solution of the Fermat equation  

y
2
 = x(x + u

 p
)(x – v

 p
)                                                      (1)  

cannot be modular. Nevertheless A.Wiles and R.Taylor proved that every semistable 

elliptic curve defined over the field of rational numbers  Q  is modular. From this it 

followed that whole numbered solution of the Fermat equation is impossible and 

therefore Fermat’s proposition is true, which is written in denotations of [5] as 

Theorem 0.5: suppose that  

u 
p
 + v 

p 
+ w 

p
 = 0                                                             (2)  

with  u, v, w  Q  and integer  p ≥ 3, then     uvw = 0. 

   Now, to all appearance, it should return backwards and critically comprehend why 

curve (1) was a priori taken in as elliptic one and what its real connection with the 

Fermat equation is. Foreseeing this question A.Wiles refers to work [2] by 

Y.Hellegouarch, in which he found the way to associate the Fermat equation 

(presumably solved in whole numbers) with a hypothetical curve of 3-rd order. In 

contradistinction to G.Frey  Y.Hellegouarch did not connect his curve with modular 
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forms but his method of getting equation (1) was utilized for further advancing 

Wiles’s proof. Let us stand at greater length at work [2]. The author of it gives his 

own arguments in terms of projective geometry. Reducing some of his denotations to 

ones of [5] we find that Abelian curve  

         Y
2
 = X(X – 

p
)(X + 

 p
)                                               (3) 

corresponds to Diophantine equation:  

              x
 p

 + y
 p
 + z

 p
 = 0                                                            (4) 

where  x, y, z   are unknown whole numbers,   p  is the same as in (2) and solution  


p
, 

p
, 

 p
  of (4) is used for recording Abelian curve (3).  

   Now in order to make sure of that this curve is elliptic one of 3-rd order, it is 

necessary to examine variables  X  and  Y in (3) on Euclidean plane. For that we 

shall use the well-known rule of elliptic curves’ arithmetic: if there are two rational 

points on a cubic algebraic curve and a straight line laying through these points and if 

this straight line crosses this curve in one more point, then the last one is a rational 

point too. The hypothetical equation (4) formally represents by itself the law of 

adding points on a line. If to change variables   x 
p
=A,  y

 p
=B,  z

 p
=C  in (4) and 

direct such an obtained line along axis  X in (3), then it will cross the curve of 3-rd 

degree at three points:  

(X1= 0, Y1= 0), (X2=
p
, Y2= 0), (X3= -p

, Y3= 0) 

and that is reflected in recording Abelian curve (3) and in analogous recording (1). 

On the other hand, these three points correspond one-to-one with intercepts of the 
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direct line. But is curve (3) or (1) really elliptic ? Obviously, it is not as X –intercepts 

are taken on a nonlinear scale when adding points on the axis.  

   Returning to linear coordinate systems of Euclidean space we get instead of (1) and 

(3) formulas greatly different from ones for elliptic curves. For instance, (1) can be 

the next form:  


2p

= 
p
(

p 
+u

p
)(

p -v 
p
) (5) 

where  
p
 = x, 

p 
= y, and in such a case appeal to (1) for discoursing and proving 

FLT looks illegal. Although (1) answers some requirements of the class of elliptic 

curves, nevertheless it does not satisfy the most principal criterion to be an equation 

of 3-rd degree in a linear coordinate system.  

b) Classification of the error.  

   So then let us return once more to the beginning of our consideration and trace the 

development of proof in [5]. Firstly, it is suggested that there exists some solution of 

the Fermat equation in positive whole numbers. Secondly, this solution is arbitrarily 

inserted into well-known algebraic form (elliptic curve of 3-rd degree) in assumption 

that such elliptic curves with parameters taken from (2) exist (second non-confirmed 

assumption). Thirdly, so far as it is proved with other methods that the built concrete 

curve is not modular, well then it does not exist. From this it follows (see [5]) that  

there is no whole numbered solution of the Fermat equation and therefore FLT is true.  

    In this discourse there is one weak link, which turns out to be an error after careful 

examination. This error is committed at the second stage of the proving process when 

it is suggested that the hypothetical solution of the Fermat equation is simultaneously 

a solution of algebraic equation of 3-rd degree presumably describing an elliptic  
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curve of well-known kind. Such suggestion in itself would be justified, if that curve 

would be elliptic indeed. However, as it is seen from 1a), it is represented in nonlinear 

coordinates that makes it “illusive”, i.e., really not existing in linear topological 

space.  

   Now it should distinctly classify the found error. It consists of the following: what 

is needed to prove is taken in as proof itself. In classical logic this error is known as 

“circulus vitiosus”. In the given case the whole numbered solution of the Fermat 

equation is associated (apparently presumably one-to-one) with fictitious, non-

existent elliptic curve and afterwards all enthusiasm of further reasoning is wasted in 

order to prove that this concrete elliptic curve obtained from the hypothetical solution 

of the Fermat equation does not exist.  

   How was it turned out that in profound in essence mathematical work [5] so 

elementary error was missed ? Probably, it happened because such “illusive” 

geometrical figures had not been studied sufficiently before, although they were used 

long ago by M. Esher (1898-1972). Indeed, who could be interested, for instance, in a 

fictitious circumference obtained from the Fermat equation by change of variables:  

Ax
n

2 , By
n

2 , Cz
n

2 ?      Its equation    C
2 

= A
2
+ B

2
 

does not have whole numbered solution when  x, y, z are whole and  n ≥ 3, you 

know. In nonlinear coordinate axis  X and Y such a circumference would be 

described with equation alike standard form by appearance Y
2
= – (X – A)(X + B), 

where  A and  B are not variables but concrete numbers defined by the above 

mentioned change. But if to give primary view to numbers  A and B consisting in 
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their power character, then non-homogeneity of designations in the right part of the 

equation is revealed straight away. This indication helps to tell illusion from reality 

and to get over from nonlinear coordinates to linear ones. On the other hand, if to 

consider numbers as operators when comparing them with variables as, for instance, 

in (1), then both must be homogeneous values, i.e., they must have the same degrees.  

   Such understanding powers of numbers as operators also allows to see that 

correspondence of the Fermat equation (see further (15)) to illusive elliptic curve is 

not simple. Let us take, for example, one factor in the right part of (5) and factorize it 

in p linear factors bringing in such complex number r  that  r
 p 

= 1  (see, for example, 

[1]):  

          ξ
p
 + u

p 
=(ξ+u)( ξ+ru)(ξ+r

2
u)…(ξ+r

p-1
u)                       (6)  

   In this case, form (5) can be represented as factorization in simple factors of 

complex numbers like algebraic identity (6) but unambiguousness of such 

factorization in general case is called in question what was shown at one time by 

Kummer [1].  

           2. Total.  

   It follows from the previous analysis that so called arithmetic of elliptic curves is 

not good in order to shed light on that, where FLT proof is to be searched. After [5] 

Fermat’s proposition, by the way, serving as epigraph to that article, began to be 

interpreted as a historical joke or prank. Though actually it was not Fermat’s joke but 

one being bred by specialists gathered on the mathematical symposium in 

Oberwolfach in Germany in 1984, where G.Frey wired for sound his ingenious idea. 

The consequences of such incautious declaration led mathematics as a whole to the 
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edge of its loss of public trust that is minutely described in [4] and that necessarily 

raises to science the question of responsibility of scientific establishments to society.  

   And still what is the sense of derivation of the inequality for whole numbered 

powers in Fermat’s proposition ? What did Fermat himself mean when he wrote 

about his “demonstrationem mirabilem” ? Answers to these questions are given in 

[3-4] and in the following part of the present work.   

 

III. Elementary proof of Fermat’s Last Theorem.  

   

   The 405 birth anniversary of the great French mathematician Pierre de Fermat 

(1601-1665) was marked by promulgation of the native proof of his famous 

proposition known as Fermat’s Last Theorem [3] (about its modern history see [4]). 

In this part of the article universal (native) properties of whole numbers’ powers are 

researched, their expression being primordial (original after Fermat) formulating 

FLT. The word “elementary” in the title of this part of the article refers not so much 

to the very idea of the proof that appears to be far from trivial but to those means, 

which Fermat himself used and which any educated senior school-goer is able to 

master.  

           1. Preliminary calculation.  

   Let it be an arbitrary right-angled triangle with hypotenuse  z and legs x0, y0   

directed along the axes   x, y  of 2-dimensional Euclidean space. Let us divide this 

hypotenuse into two parts  k  and  l  with help of a perpendicular dropped from the 

vertex of the right angle of this triangle. Then applying the method of geometrical 
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average (mesolabum) to the above mentioned values one can build any whole powers 

of numbers  x0  and  y0  and compare them with the same power of number  z . So we 

obtain two initial proportions:  

 ,    
0

0

yz

y l
                                                     (7)  

from which we get the following chains of equalities when integer   n > 2:  

0 -3

0 1 -2

... ,n

n

x kz k

x k k k
     

    0

0

-3

-2

... ,n

n

lyz l

y l l l
   

1

                                             (8) 

kz=x
2

0, k1z=x0k, k2z=x0k1, …, kn-2z =x0kn-3 

 lz=y
2
0, l1z=y0l, l2z =y0l 1, …, ln-2z=y0l n-3                                (9)  

 

x
2
0=kz= 1

0

k z

x

 
 
 

z,   x
3

0=k1z
2
= 2

0

k z

x

 
 
 

z
2
, … ,  x

n
0=kn-2z

n-1
                        (10) 

 y
2
0= lz = 1

0

l z

y

 
 
 

z,   y
3
0 = l1z

2 
= 2

0

l z

y

 
 
 

z
2
,  … ,   y

n
0= ln-2z

n-1 

In the long run we get the universal equality in real numbers showing that any same 

whole degrees of catheti of some right-angled triangle are in sum always less than the 

same degree of its hypotenuse when    n > 2  : 

z
n  

= x
n
0+ y

n
0+ n                           (11)  

where   n= z
n-1

[(k – kn-2)+(l – ln-2)]     is a non-negative real number such that  

n > 0 when  n > 2  and    x0y00;n=0 when  n = 2 and   x0 y00;  
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x0, y0,[0,z], z(0, ).  Number  n  is a remainder after subtracting  x0
n
  and  

y0
n
  from  z

n
.  

   In particular, the Pythagorean theorem follows from (11):  

2 2 2
0 0z x y                                                        (12)  

   A wonderful property of whole degrees of whole numbers follows also from (7)-

(12) and it lies in one-to-one correspondence between partitions of any whole degrees 

of real number  z   into parts according to formula (11). It says in the next lemma 

about such isomorphism (hereinafter with the aim of recording economy we shall use 

modern mathematical symbolism when decoding Fermat’s ideas).  

           2. Rehabilitation of FLT.  

Lemma. There exists one-to-one correspondence between each pair of numbers  

(x0, y0)   from one semiquadrant of 2-dimensional arithmetical space  of non-

negative real numbers’ set with norm   
2 2
0 0z x y        and each corresponding 

partition of any whole degree  n > 2  of number  z    from  n - dimensional 

arithmetical space of non-negative real numbers’ set into the sum of the same degrees 

of numbers    x0, y0 and remainder  n   from (11). 

Proof. One-to-one continuous correspondence between the set of points of 2-

dimensional Euclidean space with position vectors’ length z, the set of  partitions of 

z
2
 into squares, and the sets of partitions (11) for any whole  n > 2 can be written as 

follows:  

 {z(x0,y0)}  {z
2
=x

2
0+y

2
0}  {z

n
=x

n
0+y

n
0+n},                                (13)  



 11 

where each of the sets (11) is generated by the next degree similarities:  

z  z
2  z

n
, х0 х

2
0 х

n
0, y0 y

2
0   y

n
0 

As indicated isomorphism repeats itself for symmetrical pairs of numbers (y0, x0)     

from an adjacent semiquadrant, one should confine oneself to the next ranges of 

numbers:  x0  [x0
min

, z], y0  [y0
max

, 0], where equality x0
min

 = y0
max

 

describe the initial location of hypotenuse  z  by its division with perpendicular into 

equal parts   kl  from (7).  

   Thus, when value   x0
n
   in the range   [x0

min
, z]  strictly increases, value  y0

n
  in the 

range  [y0
max

,0]  strictly decreases, then value  n=z
n
–x0

n
–y0

n
 

strictly decreases from  max
n   (when  x0

min
 = y0

max
) to   0  in semiquadrant [0, 

4


].   

The last can be seen from comparing rates of changing functions  x
n
 = z

n
cos

n 

and y
n
 = z

n
sin

n, where    is an angle between axis x  and constant hypotenuse z  

(x
n 
 increases monotonously more rapidly than  y

n
  monotonously decreases when    

n > 2). At  n = 2 value n  constantly equals  0 (see (11)-(12)).   

   Therefore each concrete partition (11) into sum of three numbers  x0
n
, y0

n
, n 

differs from all other partitions (11) by its non-recurrent values. In fact, at least each 

of three terms in a concrete partition (11) is different from like terms in other 

partitions (11). If to suppose cross equality between terms in any two partitions   

z
n 
= x

n
01+y

n
01+ n1 = x

n
02+ y

n
02+ n2, for example, 01 2

n
nx  , then it would be   
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11 2 20 0 0
n n n

ny x y   , from which it follows that these two partitions are different 

because    y
n
01 ≠ (x

n
02  or  y

n
02 ). 

Consequently one-to-one correspondence of partitions’ sets in (13) is established 

and Lemma is proved.  

   Now let us turn to equality (12), which can play the role of abacus if increasing      

x0
2
  and corresponding decreasing  y0

2
  happen exactly for 1. For this let us introduce 

the notion of right-angled triangled numbers or briefly right-angled numbers.  

Definition. A non-negative real number, the square of which is a non-negative whole 

number, is called right-angled number.        

   Right-angled numbers will be denoted by tilde over the number when it is 

necessary. For example, 17z  , 2 17z  . The set of right-angled numbers   

Р={0, 1, √2 , √3 , 2, 5, …} is countable. The system of right-angled numbers   

P =Р,+,·,0,1 is defined by operations “addition” and “multiplication” and by two 

singled out elements “zero” and “unit”. In relation to addition the system P is non-

closed.  

   We shall build partitions of type (11) on the lattice of right-angled numbers with 

coordinates  0 0,x y     from semiquadrant  [0, 
4


]  of 2-dimensional arithmetical space 

and the norm  2 2 2
0 0z x y     differing by its square fragments and being a partition of 

number   
2z   into summands represented by non-negative whole numbers. Here the 

norm of real numbers  2 2
0 0z x y    becomes the module of right-angled numbers   

z . The minimal (non-zero) norm (standard) of right-angled numbers equals 1, which 

is also their minimal module (measure).  



 13 

   According to Lemma one can write the chain of one-to-one correspondences for 

right-angled numbers in compliance with (13):  

                                                                                      (14)  

However, in contrast to continued sets in (13), which are uncountable, sets (14) are 

countable and this very important circumstance will be used in proving the Fermat 

theorem.  

Fermat’s Last Theorem. For any positive whole numbers    z, x, y  and natural  

n > 2   the following equality is not valid:      

z
n
= x

n
+y

n
                                                       (15)  

Proof. Considering a hypothetical partition of whole degrees of whole numbers into 

the sum of the same degrees of other whole numbers in (15) we notice that such a 

partition would be a particular case of partition (11) written in right-angled numbers. 

Indeed, uniting any two summands in (11) one can get a partition that is comparable 

with (15). Thus, it appears a possibility of availability of number equality (15) in the 

finite series of the countable set of right-angled partitions (11) for the given  z.  

   Suppose that a triple of whole numbers z , x, y  is found, for which the equality 

(15) is valid (call it Fermat’s triple). Assume that we got primitive Fermat’s triple 

such that         (z)
n
=(x)

n
+(y)

n
, where z, x, y are coprime numbers. But then 

there exists similar Fermat’s  triple with greatest common divisor  d  such that    

z
n
=x

n
+y

n
, where z=(zd),  

x =(xd ), y =(yd). Divide equality (15) for this “big” Fermat’s triple by  z
n-2

   

and get:  
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 
 

 

 

 

 

 

 

 

2 2
2

2 2 2 2

n n n n

n n n n

x d y d x d y d
z d

z d z d z z
   

   
     

   
 

 = (x0)
2
d

2
+(y0)

2
d

2 
, 

where   
 

 

2

0 2

n

n

x
x

z



 


  and   

 

 

2

0 2

n

n

y
y

z



 


  are rational numbers. Selecting d in 

corresponding way, for example, suggesting that d = (z)n-2
 we get that  (x0)

2
d

2
   

and   (y0)
2
d

2
  are whole numbers (generally speaking, d can be chosen very great 

consisting not only of numbers  z but of other whole numbers). Then all Fermat’s 

triples if they exist can be found and corresponding partitions be built in right-

angled numbers’ set with any greatest common divisors for gauge transformed 

Fermat’s triples. In such a case equality (15) for whole numbers can be satisfied by 

right-angled partitions of the following type:  

z
n
= x

n
+y

n
=z

n-2  2 2
0 0x y                                          (16)  

where  x
n
  and  y

n
  are divided by  z

n-2
 into whole numbers, i.e., z, 2

0x ,  2
0y   are 

whole.  

   Besides that, equality (15) for gauge transformed hypothetical Fermat’s triple 

represents by itself a right-angled partition (11) written in implicit form (15).  

This form can be equated with only those partitions (11) that satisfy the next 

combination formula:    0 0( )n n n n
nx or y x or y or    . 
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Among all possible variants only partitions with the same bases  0x ,  0y  answer one 

and the same norm  2 2 2
0 0z x y   . So one can define the location of a partition, for 

which there exists the following partition equality according to Lemma and (16):  

z
n
=x

n
+y

n
=  2 2 2

0 0 0 0·n n n
nx y z x y        ,                  (17) 

i.e., in the system of count with bases  0x , 0y   there exists only one partition of z
n
    

into   n-th degrees of right-angled numbers.  

   By the way, in the system of real numbers the above consideration would be illegal 

because of the lack of common standard for number comparison in consequence of 

uncountability of real numbers’ set. Actually, partitions of z
n
  into two and three 

summands could not be attached then to the identical numeral and therefore their 

equalizing to each other would be incorrect without a common comparison standard. 

On the contrary, all partitions of right-angled numbers can be enumerated according 

to (12) and (16).   

   Let us conduct now identification of different fragments of partition (17). Since  

2 2
0 0·n nx z x    and  2 2

0 0·n ny z y  , the equality of partitions to each  other is fulfilled 

only when  

 0 0
n n n nx y x or y    (18) 

and correspondingly  n= (y
n
 or x

n
). It can be also noticed that 2 2

0 0·n n nx z y y    

and  2 2
0 0·n n ny z x x     because of the lack of coincidence of decompositions in 

factorization of numbers  0
nx   and  y

n
, 0

ny  and  x
n
. 
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   Let us show now that  0x  and 0y  cannot be irrational in (18) on account of integer 

partition of z
n
  into  x

n
  and  y

n
. Here two cases can occur:      when  n  is odd number 

(designate it by = nodd 
 
3) and when  n  is even number (designate it by   

= neven ≥ 4).  

   Considering the first case at the beginning we find that 0x  and 0y  cannot be 

irrational in (18) as irrational square roots do not give a rational number in sum. Let 

us consider the second case when  n =  Indeed, from the one hand, there is 

Pythagorean triple of numbers  x
m
, y

m
, z

m
  with 

2
m


  such that 

(z
m
)
2
=(x

m
)
2
+(y

m
)
2
. On the other hand, the initial equality can be rewritten in the 

form  z


=z
-2

·  2 2
0 0x y   showing that the indicated triple of numbers corresponds 

to the triple  z,  0x , 0y  describing the like right-angled triangle. Therefore  

0

m

m

z z

xx



, 

0

m

m

z z

yy



, 1

0·m mx x z   , 1
0·m my y z    

and   0x  and  0y  are not irrational.  

   So it was revealed as a result of the previous calculation that equality (18) consists 

of whole numbers. Furthermore, Fermat’s triple obtained from them for the given  

n ≥ 2, for example,  0x , 0y ,  x, is not the same by value as Fermat’s triple  x,  y,  z  

from (15), since  0

0

x x

y y





 that is clear from the following:  
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2 2 2
0
2 2 2
0

·
n n

n n

x x x x

y y y y




 




 

Hence equality (18) reduced to the form (16) describes another right-angled triangle 

different from that defined by Pythagorean triple     0x , 0y , z.  

   Let us come back to the assumption at the beginning of the proof that integer 

solution (15) exists. This assumption is substantiated only when there is concrete 

solution (18) in whole numbers. In order to check validity of (18) it is necessary to do 

the same discourse as before, since equations (15) and (18) are identical by their 

properties. This procedure can be continued to infinity in the direction of decreasing 

whole numbers under condition that sequence of chained equalities never stops, i.e., 

numbers 2
0x  and 2

0y  in (16) will be always whole. If it is not so, i.e., 2
0x  and 2

0y  in 

chained equalities (18) turn out to be fractions, then this means that solution (15) does 

not exist in the system of right-angled numbers. Actually, since all partitions of the 

type (17) are built from the very beginning exclusively on the set of right-angled 

numbers’ squares being in fact whole items of finite series of partitions, then non-

whole 2
0x  and 2

0y  show pointlessness of such procedure, i.e., the absence of integer 

solution (15) or zero solution. On the other hand, infinite sequence of chained 

equalities (18) leads to infinite decreasing of positive whole numbers that is 

impossible and therefore assuming that there exists an integer solution of (15)   

when  n > 2 is not true.  

   Thus the theorem is proved both for all even and for all odd degrees of whole 

numbers.  
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IV. Conclusion.  

   In conclusion the author begs to suppose that this proof will turn over all modern 

mathematics from head onto feet, as the Fermat theorem introduces in consideration natural 

ways of constructing powers, new axiomatic for natural series of numbers, and therefore 

new ideas about real numbers’ axis. As an example for comparing, one should take 

Newton’s binom formula and Fermat’s binom, if to mean by this notion the Fermat 

equation (15).  

   The lattice of Newton’s binom is one-dimensional and entirely defined on real numbers’ 

line, but Fermat’s binom is nonlinear and its lattice is defined by two independent 

parameters: the base and the exponent of a power. In order to feel this thought better, one 

should compare the formula  z
2
 = (x +y)

2
 (the simplest Newton binom) and the 

Pythagorean theorem (12) (the simplest Fermat binom) and make sure that they are 

certainly different mathematical structures.  

   The author is firmly convinced of that the cause of non-understanding FLT in high 

mathematical circles is of the same order as the cause of non-understanding UFO and other 

unknown objects by modern science, i.e., in other words, as these phenomena do not go 

into the sphere of notions and tools of modern science, so then they do not exist as if.  
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