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AHHOTAIIUA

['unote3a buns kak o0ob6menHas Benukas teopema depma paccMaTpUBACTCS C
TOYKM 3pEHHUs MaTeMaTU4YeCKOM Inicuxonoruu. HMccimenoBanue rumnoressl buid
OpOBOAUTCS Ha 0a3e TeOMETpUYECKOM TeopeMbl EBKiIMga W «4yAECHOro
J0KA3aTeNbCTBA» yTBepKAeHUs dDepma, 3aIMCaHHOTO UM Ha MOJAX «ApupMETHKN»
Huodanrta.  Ilpennaraerca  MaremMaruueckass  PEKOHCTPYKLMS ~ HATHBHOIO
nokazarenbctBa Bennkoit teopembl depma u pemenue npodsemsl buns Ha ee
ocHoBe. I'unore3a bunsa u Benukas teopema depma kinaccupuuupyroTcss B HAyYHOM

HCCICAOBAaHHUHU KaK O6paTHBIe 3aJa4yd MaTEMaTU4YE€CKOM CUXOJIOTHH.

KiaroueBsble ciaoBa: runorteza bunsd; Benukas teopema depma; npeBHerpeueckas

MaT€MaTHKa, MaTEMaTHYCCKas IICUXOJIOIuAa



ABSTRACT

Beal’s Conjecture as generalized Fermat’s Last Theorem is considered from
viewpoint of mathematical psychology. Investigation of Beal’s Conjecture is
conducted on the basis of geometrical Euclid’s theorem and Fermat’s “miraculous
demonstration” of his proposition made by him on the margin of Diophantus’
“Arithmetic”. The mathematical reconstruction of native proof of Fermat’s Last
Theorem and solution of Beal’s Conjecture on its base are suggested. The final status
of both Beal’s Conjecture and Fermat’s Last Theorem is determined as reverse

problems in mathematical psychology.

Keywords: Beal’s Conjecture; Fermat’s Last Theorem; ancient Greek mathematics;

mathematical psychology

I. Introduction. Historical roots of Beal’s Conjecture and Fermat’s Last

Theorem.

Andrew Beal, a number theory enthusiast, formulated a conjecture generalizing
Fermat’s Last Theorem [4]. Apparently he was not content himself with geometric
solution of the last issued in 1995 by A. Wiles [5] and offered a prize for solution of
his generalizing conjecture [6] in order to inspire young people to research into
Fermat’s mathematics, believing that Fermat possessed a relatively simple arithmetic

proof for his enigmatic proposition [4; 6].

The Beal problem was also named the Beal Prize Conjecture by AMS [6] and the
Beal, Granville, Tijdeman-Zagier Conjecture (Wikipedia, the free encyclopedia).
Among well-known mathematics conjectures Beal’s Conjecture is occupying a
peculiar place being an announced generalization of Fermat’s Last Theorem [4]. Both
problems may be related to the part of number theory defined as arithmetic algebraic

geometry including pure arithmetic methods of research.



There is enough evidence confirming the skill of ancient mathematicians to solve
some algebraic equations with only arithmetic methods. These methods can enter into
the sphere of arithmetic algebraic geometry and may be called arithmetic geometry
methods. Corner-stones of arithmetic geometry of ancients were Euclid’s theorem
about proportional (geometric) means, unmeritedly forgotten in contemporary
Diophantine geometry, and the Pythagorean theorem emerging from it. These
theorems were widely known in ancient Greece and countries of the Great Silk Path.
Further on it will be shown how they help to find a way to solve Beal’s Conjecture

and build modern reconstruction of possible Fermat’s demonstration.

II. Lemma: Fermat’s Last Theorem. Solution of Fermat’s Last Theorem as a

reverse problem of mathematical psychology.

In fact, Fermat’s Last Theorem is prelude for Beal’s Conjecture. When proved it
becomes a constitutional part of Beal’s Conjecture solution. So we have the next

Lemma: the following equation (1) with integers z, x, y and natural exponent n > 2

has no solution:
Xy = M)

Let us check this assertion. Suppose however that at least one solution was
found. Then we shall try to construct such a solution and make certain of its

impossibility.

Proof. In the beginning let us apply extension of the set of whole numbers till the set
of right-angled numbers in order to consider (1) in such a set. Let us introduce the

notion of right-angled numbers.

Definition. Right-angled number is such a non-negative real number, the square of

which is a whole non-negative number.

The set of right-angled numbers P = {0, 1, V2, V3, 2, V5, ...} is countable. The
system of right-angled numbers P = (P,+,-,0,1) is defined by operations of addition

and multiplication with two singled out elements (zero and unit). The system P is
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non-closed in relation to addition. Notice that the set of non-negative whole
numbers is a subset of the set of right-angled numbers. Then consider (1) on
the 2-dimensional lattice of right-angled numbers z with coordinates x, , yy and norm
Z2=x7 + ys . This norm of right-angled numbers with two summands in it always
consists of whole numbers. The minimal (non-zero) norm (standard) of right-angled

numbers equals 1.

To construct Fermat’s equality (1) in right-angled numbers, let us produce two

chains of continued proportions connected with each other by the norm z° = x,° + y,’:

Z/X() = Xo/k = k/k] = .. = kn_g/kn_g

Z/y() :yo/l = Z/Z] = .. = Zn_3/ln_2 (2)

where natural indices of the last terms of each chain in (2) are getting from n > 2.

Continued proportions (2) yield the following formulae:

kz = X()z, klZ = X()k, kzZ = X()kl, ceey kn_zZ = X()kn_3

Iz :yoz, hz=yol, bz = yoly, ..., [0z = yol,3 (3)
xo’ = kz =(kiz /xo)z, xo°=kiz>=(koz /x0)2", ... , X" = kyoZ""

y02 =z :(ZIZ /y())Za y03 = 1122 :(IZZ /y())Zza cee y()n = Zn-2Zn_1 (4)



Now it is necessary to fix the norm for the partition of z" into two like powers in
(1). As in the case of Beal’s Conjecture, let us assume that z, x, y in presupposed
equality (1) have a common factor d, 1. e.,z = (z'd), x = (x’d), y = (v'd), where z’, x’,

y’ coprime. Thereupon we divide equality (1) by z*”' and get:

z=(z'd)=x'd)"/z’d)"" + 'd)" /(z’d)"" =k + 1, where k and [ integers if d = (z’)"
as a minimum, d may be any whole number divisible by its minimum. From this and
(3)-(4) it follows that z° =x,” + y/ and 2" =2"" (x7 + »,° ) as a scaled-up

modification of the norm z° = x()z + y02 .

Further, one can get a singular partition of z* into three terms from (4) for the

given norm when n > 2 :
Z'= .X()n + y()n + /1;1 (5)

where A, = 2" [ (k—k,.) + (I—1,) ] is a remainder after subtracting x," and y," out

of Z" suchthat 1,>0whenn > 2and xyyy#0, 1,=0whenn=2andx,y,#0,

X0, 0. E€ [0, z], z€ (0, ).
Partitions (5) can be reduced to the norm, from which they were obtained:
Zn — xon +y0n + /‘ln — Zn—Z (XOZ +y02) — xn +yn (6)

Formula (6) represents by itself a combinatorial equality of two partitions in three and
two terms. In fact, it is one and the same partition in two terms. If it would not be so,
equality (1) could not have the same norm and chain of proportions, from which (5)
was obtained, would be different from (2). It means that partitions (6) are equal
similar partitions of n-dimensional cube into two and three smaller n-dimensional
cubes (however in general case, parallelepipeds z"~ x,° and 2z y,’ are not similar to

5



n-dimensional cubes and cannot form equal partitions; besides, irrational x, , yy , x ,
and y cannot equate terms in (6)). One-to-one correspondence between partitions (6)
1s established by (2) and forms a closing stage in reverse problem method applied in
mathematical psychology when Fermat’s Last Theorem is considered as one of

reverse problems for solution of mathematical tasks [1;2;3].

Thus there is 1somorphism of partitions (6), owing to which scaling invariance
of the norm 2" (x5 + ys ) leads to the next equalities of different fragments of

partitions (6):
xg' +yo = (x"ory") (7)

and correspondingly A, = (3" or x"). It can be noticed that x," # z"%-y,’= " and
v # Z"7x,; = x" because of the lack of coincidence of decompositions in
factorization of numbers x," and y", y,"and x" . Obviously, x," # Z"%x,” and Yo'

+ Z"'Z'y()z .

Let us show now that x, and y, cannot be irrational in (7) on account of integer
partition of z" into x" and )" . Here two cases can occur: when #z is an odd number
(designate it by v = n,qq > 3) and when 7 is an even number (designate it by u =
Heven = 4) . Considering the first case we find that x, and ), cannot be irrational in

(9) as irrational square roots do not give a rational number in sum.

Let us consider the second case when n = u. Indeed, from the one hand, there is
Pythagorean triple of numbers z”, x”, y" with m = u/2 such that (z")* = (x")* + (")".
On the other hand, the initial equality can be written in the form 2 = x02 + y02
showing that the indicated triple of numbers corresponds to the triple z, xo, o

describing the like right-angled triangle. Therefore Zz"/AX" = z/x, , Z"A" = z/vy
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So, it was revealed, as a result of the previous calculation, that equality (7)
consists of whole numbers. Furthermore, Fermat’s triple obtained from them for the
given n >2, for example, x), )y, X, 1is notthe same by relative value as Fermat’s
triple x, y, z from (1), since xo/ y9 # x / y that is clear from the

following: x5°/vs° = X"4" = (A)EH") .

Hence equality (7) represented in the form (1) describes another right-angled triangle

different from that defined by Pythagorean triple x,, yy, z.

Let us come back to the assumption at the beginning of the proof that integer
solution (1) exists. This assumption is substantiated only when there is a concrete
solution (7) in whole numbers. In order to check validity of (7) it is necessary to do
the same discourse as before, since equations (1) and (7) are identical by their
properties. This procedure can be continued to infinity in the direction of decreasing
whole numbers under condition that sequence of different chained equalities never
stops and numbers x,’ and y,’ in (6) will be always whole. If it is not so and numbers
in chained equalities (7) turn out to be fractions, then this means that solution (1)
does not exist among whole numbers. On the other hand, infinite sequence of
chained equalities (7) leads to infinite decreasing of positive whole numbers that is
impossible and therefore assuming that there exists an integer solution of (1) when
n >2 is not true. Thus the theorem is proved both for all even and for all odd degrees

of whole numbers.

ITII. Solution of Beal’s Conjecture as a reverse problem of mathematical

psychology.

The Beal conjecture states [4]:

The equation A* + B = C° has no solution in positive integers A, B, C, x, y, and z

with x, y, and z at least 3 and A,B, and C coprime.



Or, restated [4]:

Let A, B, C, x, y, and z be positive integers withx, y, z > 2. If A* + B" = C, then

A, B, and C have a common factor.
Let us rewrite the Beal conjecture equality in the following way:
Xy =2 ®)

with positive integers x, y, z having a common factor and exponent n taking

simultaneously the next spectrum of values: »n = (k, [, m) , where integers k, [, m

at least 3 and » has one independent value for each term. Then we assume at the
beginning that equality (8) exists and can explore some arbitrary solutions of

equation (8) in whole numbers.

Consider equality (8) as a partition of z" into two parts x" and )" written in
whole numbers. It can be reduced to the form of Pythagorean equation in real
numbers dividing (8) by 2. But for the purpose of integer computing and getting
similar partitions from (8) with whole parts in it, it is necessary to use specific
numbers. To produce such scaling in arithmetic geometry, let us use right-angled

numbers (see above Definition).

One can rewrite (8) as an equality for some coprime x’, y’, z” and common

whole factor d : (z’d)" = (x’d)" + (y’d)l and fulfil scaling-down:

@df = (xd)f ) @d)" + ¢d) | @d)" = ) dT @) ) d T @)
= x;° + vy, , where x,” and y,’ are squares of some right-angled numbers x, and y,
with appropriate d. To get whole parts in the sum of this equality, one must regard
exponents (k-m+2) and (I-m+2) with base d equal to (z’)"” . Obviously, k and /
have to be more or equal m—I. If k or / does not satisfy this rule, then equality (8)
cannot be represented on the lattice of right-angled numbers and consequently
constructed in natural numbers. However, if (k, /) = m—1, equality (8) assumes the

following character (quantic) after fulfilling scaling-up:



m k

i
z =x +

V=27 (xd + o)) )

To construct binomial (9) in right-angled numbers, let us apply the ancient
method of getting powers of whole numbers using Euclid’s theorem about
proportional means and produce two chains of proportions connected with each

other with some equality presenting integer z as a sum of two whole numbers:
zix =x/k =klk; = ... = ky_3/kn> (10)
zy=y/l=Ul,=..=1l,3/,,

where z, x, y are some unknown integers from (8), m natural index at least 3, and z =
ky>+ I, >, where k,,, and [, , with natural indices are some whole parts of z taken

from the method of scaling-down (see lower).

From  proportions (3) one can obtain the next formulae:
X =hkz=(kiz/X)z, ¥ =kizZ’ = (koz /x)2°, ..., X" =kpoZ"", (11)

—1

Vo=lz=Uzhz, Yy =12 = (lzNz, ..., Y =1 2",

and get x" = (zk, 2)z2"°, y" = (zl,»)Z"" , where k,_, and I, are found from

the basic equality (8):
z=@'d) = xd /zd)"" + d) /zd)" =k + L

Then exponents k& and / have to be more or equal m, if £k, , and [, , are to be

whole with d = (z*)"' as a minimum.

Now count that zk,_, = x;° , Zlyr = yoz , where x, , y, are right-angled numbers
from (2) when d = (z’)"' , and get x" =x,° 2", y" =y, z2"°. Hence square roots
of x", " are proportional means between x,” and 2", y,” and z” . Furthermore,
relations (11) give only one-valued powers in partition (9), i.e., x” = x*, " = ). Thus
we equalized degrees k and / to m in (9) and got the following identity for the equal

similar partitions of z" into two whole parts:

Zm — xm + ym — Zm—Z(x()Z +y02) — xk + yl (12)



Mmm = xm. Y= /™)™ =y, i.e., k, [ cannot be more or less than m in

where x* = (x
order to satisfy boundaries of the right-angled lattice. Therefore (k, /) = m, since
roots with degrees m = 3 cannot be numbers of the right-angled lattice and bases x,
v may be only whole powers beginning with exponent 1 under m. In other words, m
serves as a special quantifier for degrees of equation (8). Here also was used a

closing stage in reverse problem method applied to the Beal conjecture.
All this yields that (8) comes to the Fermat equality in integers:
X" +yt =" m=3, (13)

where common whole factor d for x = x’d and y = y’d may be any integer, for
example, prime number. Then (13) can be reduced to the hypothetical equality in
coprimes, which is impossible according to the above proof of Fermat’s Last

Theorem (see Lemma).

IV. Conclusion. The method of reverse problem as new way in proving

mathematical truths.

Summarizing the obtained proof of both Beal’s Conjecture and Fermat’s Last
Theorem, let us single out those essential moments that properly make a reverse
problem in such tasks. In proving Fermat’s Last Theorem there exists one-to-one
correspondence between partitions into two and three summands, or, in other words,
between hypothetical Fermat’s equality and the built partition into three summands
there is isomorphism (preservation of Fermat’s equality structure). Reducing of
obtained partitions to the form of Fermat’s equation just comes to a reverse problem
of mathematical simulation of sought-for equality for higher powers of whole

numbers.

The reverse problem method has three standard stages of mathematical
modeling. In application to construction of the Fermat equation these stages look as
follows. The first stage is when hypothetical Fermat’s equality presents itself in the

form of scaled-up norm z"? (x,° + y;° ) , from which partitions in three summands
p y p
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are obtained for each n > 2. The second stage is when isomorphism between Fermat’s
equality and the built partition into three summands is established, i.e., there is
preservation of operations, order, and topology of n-dimensional arithmetic space,
where n natural number. The third stage is when using final view of partitions one

can get the initial image of the presupposed Fermat equation.

The method of reverse problem is applied also to Beal’s Conjecture as
generalized Fermat’s Last Theorem. At the first stage the norm for the Beal equality
1s established. At the second stage the scaled-up norm equalizes powers of the Beal
equality and the Fermat equality. At the third stage the concrete values for x and y in

equalities (12) are determined.
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