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Abstract  

        The author suggests his mathematical reconstruction of “demonstratio mirabile” 
for the famous proposition made by P. Fermat to the task 8 of Diophantus’ 
“Arithmetic” and widely known henceforth as Fermat’s Last Theorem. This 
reconstruction is based on geometrical Euclid’s theorem supplemented by Fermat’s 
original method of infinite descent. The given research is fulfilled from viewpoint of 
modern mathematical psychology.  
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Introduction. Formulation of the problem.  

        Pierre de Fermat formulated his famous proposition on the margin of 

Diophantus’ “Arithmetic” [1] (near the task 8 of the book II). The eighth problem of 

the second book suggests to separate a square into two squares in whole numbers. It 

was known long ago that this problem has an infinite set of solutions. But Fermat 

generalizes the task in case of any whole power above the second, which is asked to 

be separated into two powers of the same degree. Simultaneously Fermat points out 

at impossibility of getting such partitions in whole numbers claiming here that he 

found a “miraculous” proof of this proposition. However for psychological 

comprehension of the authentic text it is better to read Fermat’s comment directly:  

        “Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-

quadratos,  et generaliter nullam in infinitum ultra quadratum potestatem in duas 
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ejusdem nominis fas est dividere; cujus rei demonstrationem mirabilem sane detexi. 

Hanc marginis exiguitas non caperet.”  

        How could Fermat solve the unique problem straight off and without a shadow 

of doubt ? The sole reason for it is that he could see the mental picture of his proof. 

Such a picture emerged in his consciousness during his insight allowing him to 

investigate instantly all necessary details of solution [2]. Visual image of the problem 

must have had a geometrical form, which apparently could not take its place on 

narrow margins. This geometric pattern serves as general illustration for Euclid’s 

theorem about proportional means, from which formulation of Pythagorean theorem 

and Fermat’s proposition (called Fermat’s Last Theorem later on) could be easily 

obtained.  

Following Fermat’s mental investigation (contemporary comprehension).  

        Let us proceed following Fermat’s mental investigation of Pythagorean theorem 

and its generalizations in the case of any n-th degree for splitting higher whole 

powers into two powers of the same degree. Ancient Greek mathematicians could 

solve some algebraic equations with only arithmetic methods on the basis of 

Euclidean geometry, so that they might be called arithmetic geometry methods and 

included into the range of modern arithmetic algebraic geometry. Of course, Fermat 

knew about these ancient methods and could develop them using his visual 

observation of such properties of geometrical figures that became origins for future 

algebraic notions. But Fermat did not produce new terminology and formulated his 

research results in pure arithmetic manner. In order to follow the invisible part of 

Fermat’s meditative activity, let us apply further contemporary mathematical 

language for reproducing the logical path of his reasoning.  

        So, let us take geometrical Euclid’s theorem for the beginning of this path. In 

order to construct the Pythagorean equation and the Fermat equation in whole 

numbers from it, one must be sure that squares of proportional means in Euclid’s 

theorem are whole numbers. Just from them the higher powers for the Fermat 

equation can be obtained. One can find such squares for any Fermat’s hypothetical 

equality:  
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                                                  zn = xn + yn                                                        (1) 

where z, x, y integers and natural exponent n > 2. In general case, z = (z’d), x = (x’d), 

y = (y’d), z’, x’, y’ coprime, and d common whole factor. Let us assume that equality 

(1) exists (according to the rule of contraries in contemporary mathematics). Divide 

equality (1) by z n-1 and get:  

                     z = (z’d) = (x’d)n / (z’d)n-1 + (y’d)n / (z’d)n-1 = k + l                         (2)  

where k and l integers if d = (z’)n-1 as a minimum, d may be any whole number 

including this minimum as a multiplier. Then we apply Euclid’s theorem to construct 

the Pythagorean equality z2 = zk + zl = x0
2 + y0

2 ,  where x0
2 = zk   and  y0

2 = zl :                      

                               z / x0 = x0 / k  ,       z / y0 = y0 / l                                             (3) 

As numbers  x0 , y0 are square roots of whole numbers, then one should give special 

attention to the equality z2 = x0
2 + y0

2 , which we shall call the norm of whole number 

z in 2-dimensional arithmetic space for the sake of exposition convenience (in fact, it 

is invariant for each pair x0 , y0 as we shall see later).   

        From (1)-(3) it follows a scaled-up modification of the norm: zn = zn-2(x0
2 + y0

2) 

=  xn + yn . The norm of whole numbers cannot be less than 1. To construct Fermat’s 

binomial (1) in whole numbers, let us produce two chains of continued proportions 

connected with each other by the norm  z2 = x0
2 + y0

2 :               

     z/x0 = x0/k = k/k1 = … = kn–3 /kn–2                                                 

      z/y0 = y0/l =  l/l1 = … = ln–3/ln–2                                                                            (4)  

where natural indices of the last terms of each chain in (4) count for n > 2. Continued 

proportions (4) yield the following formulae:                                                                 

          kz = x0
2, k1z = x0k, k2z = x0k1, …, kn-2z = x0kn-3    

          lz = y0
2, l1z = y0l, l2z  = y0l1, …, ln-2z = y0ln-3                                                       (5) 

 x0
2 = kz =(k1z /x0)z,   x0

3 = k1z2 =(k2z /x0)z2, … ,  x0
n = kn-2zn-1 

 y0
2 = lz =(l1z /y0)z,   y0

3
 = l1z2  =(l2z /y0)z2,  …  ,  y0

n  = ln-2zn-1                                   (6)  
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Further one can get a single partition of zn into three terms from (5)-(6) for the given 

norm and each n > 2:  

                                             zn = x0
n + y0

n + 𝜆n                                                          (7) 

where 𝜆n = zn-1 [ (k – kn-2) + (l – ln-2) ] is a remainder after subtracting x0
n and y0

n  out 

of  zn  such that 𝜆n > 0 when n > 2 and  x0 y0 ≠ 0,  𝜆n = 0 when n = 2 and x0 y0 ≠ 0 ,   

x0 ,  y0,∈ [0, z],  z ∈ (0, ∞) .  

        Partitions (7) can be reduced to the norm, from which they were obtained:  

               zn = x0
n + y0

n + 𝜆n = zn-2 ( x0
2 + y0

2 ) =  xn + yn                                          (8)  

Formula (8) represents by itself a combinatorial equality of two partitions in three and 

two terms. In fact, it is one and the same partition in two terms. If it would not be so, 

equality (1) could not have the same norm and chain of proportions, from which (7) 

was obtained, would be different from (4). It means that partitions (8) are equal 

similar partitions of n-dimensional cube into two and three smaller n-dimensional 

cubes (however in general case, parallelepipeds zn-2 x0
2 and zn-2 y0

2 are not similar to 

n-dimensional cubes and cannot form equal partitions; besides, irrational x0 , y0 , x , 

and y cannot equate terms in (8)).  

        Speaking modern language, one must say that there is isomorphism  of partitions 

(8), owing to which scaling invariance of the norm  zn-2 ( x0
2 + y0

2 ) leads to the next 

equalities of different fragments of partitions (8):   

                                           x0
n + y0

n = ( xn or yn )                                                (9) 

and correspondingly 𝜆n = (yn or xn). It can be noticed that x0
n ≠ zn-2∙y0

2= yn and           

y0
n ≠ zn-2∙x0

2 = xn  because of the lack of coincidence of decompositions in 

factorization of numbers   x0
n and  yn ,   y0

n and  xn . Obviously,   x0
n ≠ zn-2∙x0

2 and  y0
n 

≠ zn-2∙y0
2 .  

        Let us show now that  x0
  and  y0  cannot be irrational in (9) on account of integer 

partition of  zn  into  xn  and  yn . Here two cases can occur: when n is an odd number 
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(designate it by 𝜈 = 𝑛odd ≥ 3)   and  when  n  is an even number (designate it by   𝜇 = 

neven ≥  4) . Considering the first case we find that  x0 and ,y0 cannot be irrational in 

(9) as irrational square roots do not give a rational number in sum.  

        Let us consider the second case when n =  𝜇. Indeed, from the one hand, there is 

Pythagorean triple of numbers zm,  xm, ym  with m = 𝜇/2 such that (zm)2 = (xm)2 + (ym)2. 

On the other hand, the initial equality can be written in the form   z2 = x0
2 + y0

2  

showing that the indicated triple of numbers corresponds to the triple  z ,  x0 ,    y0 

describing the like right-angled triangle. Therefore   zm/xm = z/x0  ,  zm/ym = z/y0  ,               

xm = x0·zm-1,    ym  = y0·z m-1
    and  x0  and y0  are not irrational.    

        So, it was revealed, as a result of the previous calculation, that equality (9) 

consists of   whole numbers. Furthermore, Fermat’s triple obtained from them for the 

given  n >2 ,  for example,   x0,  y0,  x,   is not the same by relative value as Fermat’s 

triple     x,  y,  z  from (1), since x0 / y0  ≠  x / y that is clear from the                               

following:  x0
2/y0

2 =  xn/yn  =  (x2/y2)(xn-2/yn-2) .                                                              

 Hence equality (9) represented in the form (1) describes another right-angled triangle 

different from that defined by Pythagorean triple   x0 ,  y0 ,  z .  

        Let us come back to the assumption at the beginning of the proof that integer 

solution (1) exists. This assumption is substantiated only when there is a concrete 

solution (9) in whole numbers. In order to check validity of (9) it is necessary to do 

the same discourse as before, since equations (1) and (9) are identical by their 

properties. This procedure can be continued to infinity in the direction of decreasing 

whole numbers under condition that sequence of different chained equalities never 

stops and numbers x0
2 and y0

2 in (8) will be always whole. If it is not so and numbers 
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in chained equalities (9) turn out to be fractions, then this means that solution (1) 

does not exist among whole numbers.  On the other hand, infinite sequence of 

chained equalities (9) leads to infinite decreasing of positive whole numbers that is 

impossible and therefore assuming that there exists an integer solution of (1)   when  

n >2  is not true. Thus the theorem is proved both for all even and for all odd degrees 

of whole   numbers.  

Conclusion. Fermat’s Last Theorem in the face of mathematical psychology.  

        Now we can sum up all the path of possible Fermat’s reasoning in proving his 

proposal. So, the Fermat equation can be made with successive application of 

Euclid’s theorem under condition that one of summands in Fermat’s equality turns 

out to be itself another Fermat’s equality but in lesser whole numbers that requires 

applying the same method to infinite chain of lesser and lesser Fermat’s equalities. 

Here Fermat finishes demonstration of his method calling the last stage of it an 

infinite descent, which actually proves the theorem in consequence of that 

mathematical fact that whole powers of whole numbers beginning from squares 

cannot be less than 1.  

        However when constructing the Fermat equation with help of Euclid’s theorem 

there is one thin mathematical moment. Between partitions into two and three 

summands there exists one-to-one correspondence, or, in other words, between 

hypothetical Fermat’s equality and the built partition into three summands there is 

isomorphism (preservation of Fermat’s equality structure). Reducing of obtained 

partitions to the form of Fermat’s equation just comes to a reverse problem of 

mathematical simulation of sought-for equality for higher powers of whole numbers.  

        Thus Fermat discovered, intuitively unexpectedly, the first reverse problem in 

mathematical psychology that has three standard stages of mathematical modeling. In 

application to construction of the Fermat equation these stages look as follows. The 

first stage when hypothetical Fermat’s equality presents itself in the form of scaled-

up norm  zn-2 ( x0
2 + y0

2 ) , from which partitions in three summands are obtained for 
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each n > 2. The second stage when isomorphism between Fermat’s equality and the 

built partition into three summands is established, i.e., there is preservation of 

operations, order, and topology of n-dimensional arithmetic space, where n natural 

number. The third stage when using final view of partitions one can get the initial 

image of the presupposed Fermat equation.  

        The method of reverse problem can be applied also to other problems of 

mathematical psychology [3]. In particular Beal’s Conjecture as generalized Fermat’s 

Last Theorem may be solved by the same way [4].   
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