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Abstract  

The Beal conjecture is proved by arithmetic geometry methods known yet to ancient 

mathematicians. These methods include constructing powers of whole numbers by 

means of proportions, making up partitions from them, their scaling-up and scaling-

down in order to get equal similar partitions. As a result of such transformations, the 

Beal equation comes to the Fermat equation, which has no solution in positive whole 

numbers that is proved by the same methods plus Fermat’s method of infinite 

descent. The given research is fulfilled in the system of right-angled numbers 

introduced by the author.  
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1. Introduction. Beal’s Conjecture as generalized Fermat’s Last Theorem. 

        Beal’s Conjecture [1] is in fact a singular counterexample to the famous proof of 

Fermat’s Last Theorem finally issued in 1995 [2]. Indeed, the Beal proposition deals 

with arbitrary powers of whole numbers combined in one equation similarly to the 

well-known equation of Fermat’s Last Theorem, but it has never been proved by the 

methods described in [2]. On the contrary, the Beal conjecture can be solved by the 

ancient Greek arithmetic geometry methods applied successfully as well to the 

Fermat problem [3]. The Beal problem was also named the Beal Prize Conjecture by 
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AMS [4] and the Beal, Granville, Tijdeman-Zagier Conjecture (Wikipedia, the free 

encyclopedia). Among all well-known mathematics conjectures Beal’s Conjecture is 

occupying a peculiar place being a generalization of Fermat’s Last Theorem [1]. 

However the generalization concerns only the formal record of this conjecture and 

does not summarize the methods of proving Fermat’s Last Theorem. On the contrary, 

the Beal conjecture comes to the Fermat problem considered as an arithmetic 

geometry problem and has easy simple solution obtained by additive number theory 

methods apparently available to ancient mathematicians and Fermat too [3]. The 

given proof of Beal’s Conjecture is related to the part of number theory defined as 

arithmetic algebraic geometry.  

2. New arithmetic geometry of Beal’s Conjecture and Fermat’s Last Theorem 

(solution of both).  

        The Beal conjecture states [1]:  

 The equation Ax + By = Cz has no solution in positive integers A, B, C, x, y, and  z  

with x, y, and z at least 3 and A,B, and C coprime.   

Or, restated [1]:  

         Let A, B, C, x, y, and z be positive integers with x, y, z > 2. If Ax + By = Cz, then 

A, B, and C have a common factor.   

        Let us rewrite the Beal conjecture equality in the following way:                                                                                                                                                                                                 

                                                        xn + yn = zn                                            (1) 

with positive integers x, y, z having a common factor and exponent n taking 

simultaneously the next spectrum of values:   n = (k, l, m) ,  where integers k, l, m     

at least 3 and n has one independent value for each term. Thus we assume at the 

beginning that equality (1) exists. Then we can explore some arbitrary solutions of 

equation (1) in whole numbers.  

2.1. Beginning of Beal’s Conjecture solution.   

        Consider equality (1) as a partition of zn into two parts xn and yn written in whole 

numbers. It resembles the Pythagorean equation in real numbers. If we could reduce 

(1) to the degree 2 with whole parts in it, then one could easily make certain that 

partition  (1) is perhaps true during checking up by transferring units from one part of 
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the sum to the other as counters on a counting line. To produce such scaling, let us 

introduce the notion of right-angled numbers.  

Definition. Right-angled number is such a non-negative real number, the square of 

which is a whole non-negative number.  

        The set of right-angled numbers  Р = {0, 1, √2 , √3 , 2, √5, …}  is countable. 

The system of right-angled numbers P = 〈Р,+,·,0,1〉 is defined by operations of 

addition and multiplication and two singled out elements (zero and unit). The system 

P is non-closed in relation to addition. Notice that the set of non-negative whole   

numbers  is  a subset  of  the set  of right-angled  numbers. Then consider (1) on     

the 2-dimensional lattice of right-angled numbers with coordinates xo , yo and norm z2 

= xo
2 + yo

2 .   

        For this reason, one can rewrite (1) as an equality for some coprime x’, y’, z’ and 

common whole factor d :   (x’d)k + (y’d)l = (z’d)m   and fulfill scaling-down:  

(z’d)2 = (x’d)k / (z’d)m-2 + (y’d)l / (z’d)m-2 = (x’)k dk–m+2 / (z’)m–2 + (y’)l dl–m+2 / (z’)m–2 = 

xo
2 + yo

2 , where xo
2 and yo

2  with appropriate d are squares of some right-angled 

numbers xo and yo. To get whole parts in the sum of this equality, one must regard 

exponents (k–m+2) and (l–m+2) with base d equal to (z’)m–2 . Obviously, k and l have 

to be more or equal m–1. If k or l does not satisfy this rule, then equality (1) cannot be 

represented on the lattice of right-angled numbers and consequently constructed in 

natural numbers. However, if (k, l) ≥ m–1, equality (1) assumes the following 

character (quantic) after fulfilling scaling-up:                  

                                                zm  = xk + yl  = zm–2 (xo
2 + yo

2)                        (2)  

        Now let us apply the ancient method of getting powers of whole numbers [3]  

and produce two chains of proportions connected with each other with some equality 

presenting integer z as a sum of two whole numbers:  

 

                    z/x = x/k = k/k1 = … = km–3 /km–2                                                (3) 

                    z/y = y/l =  l/l1 = … = lm–3 /lm–2                                  

where z, x, y are some unknown integers from (1) when their degrees are reduced to 

m, i.e., xk = (xk/m)m, yl = (yl/m)m (for the reason of simplicity we do not change the 
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designations for x, y), m natural index at least 3, and z = km–2 + lm–2 ,  km–2  and  lm–2   

some whole parts of z taken from the method of scaling-down (see lower).    

        From proportions (3) one can obtain the next formulae:                                        

x2 = kz = (k1z /x)z ,  x3 = k1z2 = (k2z /x)z2 , … ,  xm = km–2 zm–1,                           (4)                             

y2  = lz = (l1z /y)z ,  y3 = l1z2 =  (l2z /y)z2 , … ,  ym = lm–2 zm–1, 

and get  xm = (zkm–2)zm–2 ,  ym = (zlm–2)zm–2 ,  where km–2 and lm–2 are found from                                   

the basic equality (1):  

                                   z = (z’d) = (x’d)k /(z’d)m–1 + (y’d)l  /(z’d)m–1 = km–2 + lm–2     

 

Then exponents k and l have to be more or equal m, if   km–2 and lm–2 are to be     

whole with d = (z’)m–1 as a minimum (d can be  any whole number divisible by this 

minimum).    

        Now count that   zkm–2 = xo
2,  zlm–2 = yo

2, where xo , yo are right-angled numbers 

from (2) when d = (z’)m–1  , and get  xm = xo
2 zm–2,   ym = yo

2 zm–2. Hence square roots 

of  xm,  ym  are proportional means between xo
2 and zm–2, yo

2 and zm–2. Furthermore, 

relations (4) give only one-valued powers in partition (1), i.e., xm = xk, ym = yl. Thus 

we equalized degrees k and l to m in the quantic (2) and got the following identity for 

the equal similar partitions of zn  into two whole parts:   

                                         zm = xm + ym = zm–2(xo
2 + yo

2) = xk + yl                 (5)    

where  xk = (xk/m)m = xm,  yl = (yl/m)m = ym, i.e., k, l cannot be more or less than  m  in 

order to satisfy boundaries of the right-angled lattice. Therefore (k, l) = m, since roots 

with degrees m ≥ 3 cannot be numbers of the right-angled lattice, and bases  x, y  

may be only whole powers beginning with exponent 1 under m. In other words, m 

serves as a special quantifier for degrees of equation (1).  

        This yields that (1) comes to the Fermat equality in integers:  

                                                     xm + ym = zm ,  m ≥ 3                                     (6)  

 where  x = x’d,  y = y’d,  z = z’d,  d any whole factor, in particular prime factor. 

Then (6) can be reduced to the hypothetical equality in coprimes, which is impossible 

according to Fermat’s Last Theorem. Now one can prove Fermat’s Last Theorem 

with the same methods in order to fulfill solution of the Beal conjecture in full and 
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one measure, especially as generally accepted proof of Fermat’s Last Theorem [2] 

contains in itself contradiction in terms from the point of view of conventional set 

theory.  

        Indeed, according to [2] the “elliptic” curve E associated with Fermat’s equation   

al + bl = cl  is given as the set of solutions 𝑥, 𝑦  for the next equation:    

                                      E :  y2 = x (x – al ) (x – cl )  

supplemented with the neutral element ∞  (“an infinitely distant point”)  being 

actually an infinite set of solutions. But the set theory forbids using sets (including 

infinite ones) as their own elements. Therefore it is no wonder that the given 

assumption leads eventually to logical error of the type “circulus vitiosus” when the 

indicated curve E turns out to be an illusive elliptic curve, i.e., non-existent in linear 

topological space, from the very beginning of proof and not only in the end of it [5].  

Thus true correct proof of Fermat’s Last Theorem is needed to complete the solution 

of Beal’s Conjecture.  

2.2. Completion of Beal’s Conjecture solution.  

Proof of Fermat’s Last Theorem. Fermat’s Last Theorem claims that the following 

equation (7) with integers z, x, y and natural exponent n > 2 has no solution:        

                                                  zn = xn + yn                                                 (7)  

 

Let us check this assertion. Suppose however that at least one solution was found. 

Then we shall try to construct such a solution and make certain of its impossibility.      

We shall work in the system of right-angled numbers (see above Definition).      

        Consider (7) on the 2-dimensional lattice of right-angled numbers with right-

angled coordinates x0 , y0  and norm z2 = x0
2 + y0

2  differing by its square fragments 

relating to definite right-angled coordinates and being a partition of number z2 into 

two summands represented by non-negative whole numbers. The minimal (non-zero) 

norm (standard) of right-angled numbers equals 1.  

        To construct powers of whole numbers presented in (7), let us produce two 

chains of continued proportions connected with each other by the norm                       

z2 = x0
2 + y0

2:    
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                            z/x0 = x0/k = k/k1 = … = kn–3 /kn–2                                                 

                            z/y0 = y0/l =  l/l1 = … = ln–3/ln–2                                          (8) 

 

where natural indices of the last terms of each chain in (8) are getting from n > 2. 

Continued proportions (2) yield the following formulae:                                            

 

          kz = x0
2, k1z = x0k, k2z = x0k1, …, kn-2z = x0kn-3    

          lz = y0
2, l1z = y0l, l2z  = y0l1, …, ln-2z = y0ln-3                                       (9) 

 

          x0
2 = kz =(k1z /x0)z,   x0

3 = k1z2 =(k2z /x0)z2, … ,  x0
n = kn-2zn-1                         

          y0
2 = lz =(l1z /y0)z,   y0

3
 = l1z2  =(l2z /y0)z2,  …  ,  y0

n  = ln-2zn-1                (10) 

 

        Now it is necessary to fix the norm for the partition of zn  into two like powers in 

(7). As in the case of Beal’s Conjecture, let us assume that z, x, y in presupposed 

equality (7) have a common factor d, i. e., z = (z’d), x = (x’d), y = (y’d), where z’, x’. 

y’ coprime. Thereupon we divide equality (7) by zn-1 and get:  

                 z = (z’d) = (x’d)n /(z’d)n-1 + (y’d)n /(z’d)n-1 = k + l , where k and l integers 

if   d = (z’)n-1  as a minimum (d can be any whole number divisible by this minimum).  

From this and (9)-(10) it follows that   z2 = x0
2 + y0

2  and     zn  = zn-2 ( x0
2 + y0

2 )  is a 

scaled-up modification of the norm  z2 = x0
2 + y0

2 .    

        Further, one can get a singular partition of zn  into three terms from (10) for the 

given norm when n > 2 :   

                                           zn = x0
n + y0

n + 𝜆n                                                    (11)  
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where 𝜆n = zn-1 [ (k – kn-2) + (l – ln-2) ] is a remainder after subtracting x0
n and y0

n  out 

of  zn  such that 𝜆n > 0 when n > 2 and  x0 y0 ≠ 0,  𝜆n = 0 when n = 2 and x0 y0 ≠ 0 ,   

 x0 ,  y0,∈ [0, z],  z ∈ (0, ∞) .  

Lemma. There exists one-to-one correspondence between each pair of whole numbers 

(x0 ,  y0) with norm z2 = x0
2 + y0

2 from 2-dimensional arithmetic space and each 

corresponding partition of any whole degree n > 2 of integer z from n-dimensional 

arithmetic space into the sum of the same degrees of whole numbers x0 ,  y0 and 

remainder 𝜆n from (11).  

Proof. Isomorphism between the set of points of 2-dimensional Euclidean space with 

position vector length z and coordinates x0 ,  y0 , the set of partitions of z2 into squares, 

and the sets of partitions (11) for any whole n > 2 can be written as follows : 

𝑧 (𝑥𝑜 , 𝑦𝑜)     { z2 = x0
2 + y0

2 }  { zn = x0
n + y0

n + 𝜆n}, 
where sets are generated by the next degree similarities:   

z  z2  zn ,  x0   x0
2  x0

n ,  y0  y0
2  y0

n , and is proved by proportions (8). It 

should be noticed that irrational right-angled  x0 , y0  cannot equate terms in one-to-

one correspondence formulae and do not form the indicated isomorphism. 

        Partitions (11) can be reduced to the norm, from which they were obtained:  

             zn = x0
n + y0

n + 𝜆n = zn-2 ( x0
2 + y0

2 ) =  xn + yn                                   (12) 

Formula (12) represents by itself a combinatorial equality of two partitions in three 

and two terms. If it would not be so, equality (7) could not have the same norm and 

chains of proportions, from which (12) was obtained, would be different from (8). In 

the case of right-angled numbers this equality is realized only when x0,  y0 integers.  

        Thus scaling invariance of the norm  zn-2 ( x0
2 + y0

2 ) leads to the next equalities 

of different fragments of partitions (12):  

                                               x0
n + y0

n = ( xn or yn )                                     (13) 

 and correspondingly 𝜆n = (yn or xn). It can be noticed that x0
n ≠ zn-2∙y0

2= yn and           

y0
n ≠ zn-2∙x0

2 = xn  because of the lack of coincidence of decompositions in 
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factorization of numbers   x0
n and  yn ,   y0

n and  xn . Obviously,   x0
n ≠ zn-2∙x0

2 and  y0
n 

≠ zn-2∙y0
2 .  

        Let us show now that  x0
  and  y0  cannot be irrational in (13) on account of 

integer partition of  zn  into  xn  and  yn . Here two cases can occur: when n is an odd 

number (designate it by 𝜈 = 𝑛odd ≥ 3)   and  when  n  is an even number (designate it 

by   𝜇 = neven ≥  4) . Considering the first case we find that  x0 and ,y0 cannot be 

irrational in (13) as irrational square roots do not give a rational number in sum.  

        Let us consider the second case when n =  𝜇. Indeed, from the one hand, there is 

Pythagorean triple of numbers zm,  xm, ym  with m = 𝜇/2 such that (zm)2 = (xm)2 + (ym)2. 

On the other hand, the initial equality can be written in the form   z2 = x0
2 + y0

2  

showing that the indicated triple of numbers corresponds to the triple  z ,  x0 ,    y0 

describing the like right-angled triangle. Therefore   zm/xm = z/x0  ,  zm/ym = z/y0  ,               

xm = x0·zm-1,    ym  = y0·z m-1
    and  x0  and y0  are not irrational.    

        So, it was revealed, as a result of the previous calculation, that equality (13) 

consists of   whole numbers. Furthermore, Fermat’s triple obtained from them for the 

given  n >2 ,  for example,   x0,  y0,  x,   is not the same   by value as Fermat’s triple     

x,  y,  z  from (7), since x0 / y0  ≠  x / y that is clear from the                               

following:  x0
2/y0

2 =  xn/yn  =  (x2/y2)(xn-2/yn-2) .                                                              

 Hence equality (13) represented in the form (12) describes another right-angled 

triangle different from that defined by Pythagorean triple   x0 ,  y0 ,  z .  

        Let us come back to the assumption at the beginning of the proof that integer 

solution (7) exists. This assumption is substantiated only when there is a concrete 

solution (13) in whole numbers. In order to check validity of (13) it is necessary to do 

the same discourse as before, since equations (7) and (13) are identical by their 
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properties. This procedure can be continued to infinity in the direction of decreasing 

whole numbers under condition that sequence of different chained equalities never 

stops and numbers x0
2 and y0

2 in (12) will be always whole. If it is not so, i.e., x0
2   and   

y0
2  in chained equalities (13) turn out to be fractions, then this means that solution (7) 

does not exist in the system of right-angled numbers. Actually, since all partitions of 

the type (12) are built from the very beginning exclusively on the set of right-angled 

numbers’ squares being in fact whole items of finite series of partitions, then non-

whole  x0
2 and y0

2  show pointlessness of such procedure, i.e., the absence of integer 

solution (7) or zero solution. On the other hand, infinite sequence of chained 

equalities (13) leads to infinite decreasing of positive whole numbers that is 

impossible and therefore assuming that there exists an integer solution of (7)   when  

n >2  is not true. Thus the theorem is proved both for all even and for all odd degrees 

of whole   numbers.  

2.3. Results and discussion.  

        So, the full proof of Beal’s Conjecture is obtained owing to Fermat’s method of 

infinite descent (see above). Materials and methods of this research are described in 

detail in the previous sections of the article. One should draw special attention to 

constructing chains of proportions (8), which lead to the basic equality of partitions 

(12). This equality is founded on the one-to-one correspondence described by Lemma 

and establishes isomorphism between partitions in two terms and partitions in three 

terms for each chain of proportions, i.e., for each pair of whole numbers x0 , y0 . It 

should be noticed that these partitions have specific geometrical view being partitions 

of n-dimensional cubes into smaller n-dimensional cubes, so they are not linear 

sections of segments representing whole powers zn, x0
n, y0

n, xn, yn on the 2-

dimensional lattice of right-angled numbers. Thus partitions in (12) are equal similar 

partitions when one of the parts of the two-termed partition is divided in two parts 

with help of x0 , y0 .   

3. Conclusion.  

        Returning to the full proof of Beal’s conjecture, let us note the important 

circumstance,  allowing to complete it, consisted in the true proof of Fermat’s Last 
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Theorem as particular case of the considered conjecture. So, Beal’s Conjecture led to 

solving the centuries-old problem of mankind and can be called rightfully 

Generalized Fermat’s Last Theorem in memory of the greatest discovery in the 

history of human science opening new ways in world cognition and understanding 

ancient knowledge by means of modern mathematical language [6;7;8]. In particular,  

solution of Beal’s Conjecture contains in itself the description of a new hypothetical 

mathematical object with simple properties conditioned by its intrinsic structure. This 

object (represented by hypothetical Fermat’s equality in whole numbers) has been 

unknown in pure mathematics till now.        
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