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Abstract:  The Beal conjecture is proved by arithmetic geometry methods known yet 

to ancient mathematicians and developed by the author. These methods include 

constructing powers of whole numbers by means of proportions, making up partitions 

from them, their scaling-up and scaling-down in order to get equal similar partitions. 

As a result of such transformations, the Beal equation comes to the Fermat equation, 

which has no solution in positive whole numbers that is proved by the same methods 

plus Fermat’s method of infinite descent. The given research is fulfilled in the system 

of right-angled numbers introduced by the author and leading to the mathematical 

discovery of Beal’s Conjecture solution.  
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1. Introduction. Beal’s Conjecture as generalized Fermat’s Last Theorem. 

        Beal’s Conjecture [1] deals with arbitrary powers of whole numbers combined 

in one equation similarly to the well-known equation of Fermat’s Last Theorem. The 

Beal proposition can be solved by the ancient Greek arithmetic geometry methods 

applied successfully as well to the Fermat problem [2]. Among all well-known 

mathematics conjectures Beal’s Conjecture is occupying a peculiar place being a 

generalization of Fermat’s Last Theorem [1]. However the generalization in [1] 

concerns only the formal record of this conjecture and does not summarize the 

methods of proving Fermat’s Last Theorem. On the contrary, the Beal conjecture 

comes to the Fermat problem considered as an arithmetic geometry problem with 

elements of combinatorics and has easy simple solution obtained by additive number 

theory methods apparently available to ancient mathematicians and Fermat too [2]. 

The given proof of Beal’s Conjecture can be related to the part of number theory 

defined as arithmetic algebraic geometry.  

2. New arithmetic geometry of Beal’s Conjecture and Fermat’s Last Theorem 

(solution of both).          

        The Beal conjecture states [1]:  

 The equation A
x
 + B

y
 = C

z
 has no solution in positive integers A, B, C, x, y, and  z  

with x, y, and z at least 3 and A,B, and C coprime.   

Or, restated [1]:  

         Let A, B, C, x, y, and z be positive integers with x, y, z > 2. If A
x
 + B

y
 = C

z
, then 

A, B, and C have a common factor.   

        Let us rewrite the Beal conjecture equality in the following way:                                                                                          
   
                                                                                                    

                                                        x
n
 + y

n
 = z

n     
                                                (1) 
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with positive integers x, y, z having a common factor and exponent n taking 

simultaneously the next spectrum of values:   n = (k, l, m) ,  where integers k, l, m     

at least 3 and n has one independent value for each term. Thus we assume at the 

beginning that equality (1) exists, or partitions of the type (1) can be obtained. This 

method of proof is related to plausible reasoning and called the rule of contraries.  

Then one can explore some arbitrary solutions of equation (1) in whole numbers.  

        Consider equality (1) as a partition of whole number z
n
 into two whole parts x

n
 

and y
n
. It resembles the Pythagorean equation in real numbers, if we could reduce 

powers in (1) to the degree 2 with whole parts in the similar partition in order to carry 

further investigation. To produce such scaling, let us introduce the notion of right-

angled numbers (these numbers are different from so called right angle triangle 

numbers representing Pythagorean triples).    

Definition. Right-angled number is such a non-negative real number, the square of 

which is a whole non-negative number.  

        The set of right-angled numbers  Р = {0, 1, √2 , √3 , 2, 5, …}  is countable. The 

system of right-angled numbers P = Р,+,·,0,1 is defined by operations of addition 

and multiplication and two singled out elements (zero and unit). The system P is non-

closed in relation to addition. Notice that the set of non-negative whole numbers is a 

subset  of  the set  of right-angled  numbers. Then consider (1) on the 2-dimensional 

lattice of right-angled numbers with coordinates  xo , yo and that which we call the 

norms of right-angled number z differing from each other by the value of its 

summands: z
2 

= xo
2
 + yo

2
 . The norm of non-zero right-angled numbers is always 

whole and cannot be less than 1. Whole numbers xo
2
 and yo

2
 run through values from 

1 to z
2
 and from z

2
 to 1 one by one. So number z has z

2
 different partitions as its 

norms.      

        For the purpose of reducing (1) to the view of Pythagorean equation in the 

system of right-angled numbers, one can rewrite (1) as an equality for some coprime 
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x’, y’, z’, and common whole factor d :   (x’d)
k
 + (y’d)

l
 = (z’d)

m
   and fulfill scaling-

down:  

(z’d)
2
 = (x’d)

k
 / (z’d)

m-2
 + (y’d)

l
 / (z’d)

m-2
 = (x’)

k
 d

k–m+2
 / (z’)

m–2
 + (y’)

l
 d

l–m+2
 / (z’)

m–2
 = 

xo
2
 + yo

2
 , where xo

2
 and yo

2
  with appropriate d are squares of some right-angled 

numbers xo and yo. In other words, we seek such d that satisfies the above stated 

condition. To get whole parts in the sum of this equality, one must regard exponents 

(k–m+2) and (l–m+2) with base d tuple to (z’)
m–2

. Obviously, k and l have to be more 

or equal m–1. If k or l does not satisfy this rule, then equality (1) cannot be 

represented on the lattice of right-angled numbers and consequently constructed from 

natural numbers on this lattice. However, if (k, l) ≥ m–1, equality (1) assumes the 

following character (quantic) after fulfilling scaling-up:                  

                                                z
m  

= x
k
 + y

l 
 = z

m–2
 (xo

2
 + yo

2
)                                 (2)  

        Let us apply now the ancient method of making powers using Euclid’s 

geometrical theorem [2] and produce two chains of proportions connected with each 

other with some equality presenting integer z as a sum of two whole numbers: 

                       z/xo = xo/k = k/k1 = … = km–3 /km–2                                                  (3) 

                        z/yo = yo/l = l/l1 = … = lm–3 /lm–2                                  

where  z,  xo , yo  are right-angled numbers from (2), m natural index at least 3,and             

z=k  + l ;  k  and  l  are some whole parts of z taken from the method of scaling-down 

(see below).    

        From proportions (3) one can obtain the next formulae:                                        

xo
2
 = kz = (k1z /xo)z ,  xo

3
 = k1z

2
 = (k2z /xo)z

2
 , … ,  xo

m
 = km–2 z

m–1
,                            (4)                                                          

yo
2
 
 
= lz = (l1z /yo)z ,  yo

3
 = l1z

2
 =  (l2z /yo)z

2
 , … ,  yo

m
 = lm–2 z

m–1
,    

where integers k and l  are found from the basic equality (1):  

                      z = (z’d) = (x’d)
k
 /(z’d)

m–1
 + (y’d)

l  
/(z’d)

m–1
 = k  + l     
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and exponents k and l have to be more or equal m, if numbers k  and l  are whole with 

d = (z’)
m–1

 as a minimum (d can be some  whole number divisible by this minimum).  

From (2) and (4) we obtain equal similar partitions of z
n 
 into two whole parts:    

                                      z
m
 = x

k
 + y

l
 = z

m–2
(xo

2
 + yo

2
) = x

m
 + y

m
,                                (5) 

where x
k
 = (x

k/m
)

m
 = x

m
,  y

l
 = (y

l/m
)

m
 = y

m
 with whole x, y by construction (for 

simplicity we do not change here the designations for x, y although exponents k and l 

are tuple to m). Square roots of  x
m
,  y

m
  are mean proportionals between xo

2
 and z

m–2
, 

yo
2
 and z

m–2
 describing a bigger right  triangle similar to that with sides  xo , yo , z  

represented by xo
2
, yo

2
, z

2
.    

        This gives that (1) comes to the Fermat equality in right-angled numbers:  

                                           x
m
 + y

m
 = z

m 
,  m ≥ 3                                                        (6)  

 with whole  x = x’d,  y = y’d,  z = z’d, and  d as some whole factor, in particular 

prime factor. One can prove Fermat’s Last Theorem now with the same methods as 

above in order to fulfill solution of the Beal conjecture in full and one measure.   

        Let us rewrite Fermat’s Last Theorem in its usual view:    

                                           z
n
 = x

n
 + y

n
 ,  n  > 2                                                         (7)  

 Suppose that at least one solution was found. Then we shall try to construct such a 

solution and make certain of its impossibility. We shall work in the system of right-

angled numbers (see above Definition).      

        Consider (7) on the 2-dimensional lattice of right-angled numbers with right-

angled coordinates x0 , y0  and corresponding norm z
2
 = x0

2
 + y0

2
  differing by its 

square fragments relating to definite right-angled coordinates and being a partition of 

number z
2
 into two summands represented by non-negative whole numbers. The 

minimal (non-zero) norm (standard) of right-angled numbers equals 1.  
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        To construct powers of whole numbers presented in (7), let us produce two 

chains of continued proportions connected with each other by the norm                       

z
2
 = x0

2
 + y0

2
:    

 

                            z/x0 = x0/k = k/k1 = … = kn–3 /kn–2                                                 

                            z/y0 = y0/l =  l/l1 = … = ln–3/ln–2                                                       (8) 

 

where natural indices of the last terms of each chain in (8) are obtained from n > 2. 

Continued proportions (8) yield the following formulae:                                            

 

          kz = x0
2
, k1z = x0k, k2z = x0k1, …, kn-2z = x0kn-3    

          lz = y0
2
, l1z = y0l, l2z  = y0l1, …, ln-2z = y0ln-3                                                       (9) 

 

          x0
2 
= kz =(k1z /x0)z,   x0

3 
= k1z

2 
=(k2z /x0)z

2
, … ,  x0

n
 = kn-2z

n-1
                         

          y0
2 
= lz =(l1z /y0)z,   y0

3
 = l1z

2  
=(l2z /y0)z

2
,  …  ,  y0

n  
= ln-2z

n-1    
                        (10) 

 

        It is necessary now to fix the norm for the partition of z
n 

 into two like powers in 

(7). As in the case of Beal’s Conjecture, let us assume that z, x, y in presupposed 

equality (7) have a common factor d, i. e., z = (z’d), x = (x’d), y = (y’d), where z’, x’. 

y’ coprime. Thereupon divide equality (7) by z
n-1

 and get:  
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                 z = (z’d) = (x’d)
n 
/(z’d)

n-1
 + (y’d)

n
 /(z’d)

n-1
 = k + l , where k and l integers 

with  d = (z’)
n-1

  as a minimum. From this and (9)-(10) it follows that z
2
 = x0

2
 + y0

2
 

and  z
n 
 = z

n-2
 ( x0

2
 + y0

2
 )  is a scaled-up modification of the norm  z

2
 = x0

2
 + y0

2
 .    

        Further, one can obtain a singular partition of z
n 
 into three terms from (10) for 

the given norm when n > 2 :   

                                           z
n
 = x0

n
 + y0

n
 + 𝜆n                                                          (11)  

where 𝜆n = z
n-1

 [ (k – kn-2) + (l – ln-2) ] is a remainder after subtracting x0
n
 and y0

n
  out 

of  z
n
  such that 𝜆n > 0 when n > 2 and  x0 y0 ≠ 0,  𝜆n = 0 when n = 2 and x0 y0 ≠ 0 ,   

 x0 ,  y0, [0, z],  z  (0, ∞) .  

        There exists one-to-one correspondence between each pair of numbers  (x0 ,  y0) 

with norm z
2
 = x0

2
 + y0

2
 from 2-dimensional arithmetic space and each corresponding 

partition of any whole power n > 2 of integer z from n-dimensional arithmetic space 

into the sum of the same powers of numbers x0 ,  y0 and remainder 𝜆n from (11). 

Isomorphism between the set of points of 2-dimensional Euclidean space with 

position vector length z and coordinates x0 ,  y0 , the set of partitions of z
2
 into squares, 

and the sets of partitions (11) for any whole n > 2 can be written as follows : 

 𝑧  (𝑥𝑜 , 𝑦𝑜)      { z2
 = x0

2
 + y0

2
 }   { z

n
 = x0

n
 + y0

n
 + 𝜆n}, 

where sets are generated by the next power similarities:   

z   z
2
   z

n
 ,  x0    x0

2
   x0

n
 ,  y0   y0

2
   y0

n
 , and is proved by (8) – (11).  

        Partitions (11) can be reduced to the norm, from which they were obtained:  

             z
n
 = x0

n
 + y0

n
 + 𝜆n = z

n-2
 ( x0

2
 + y0

2
 ) =  x

n
 + y

n
                                   (12) 

Formula (12) represents by itself a combinatorial equality of two partitions in three 
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and two terms because there is one-to-one correspondence between pairs (x0 ,  y0) and 

presupposed partition (7). In the case of right-angled numbers this equality is realized 

only when x0,  y0 integers. Algorithm of such correspondence is given in the next 

formula (13). Thus scaling invariance of the norm  z
2
 = ( x0

2
 + y0

2
 ) leads to the 

following equalities of different fragments of partitions (12):  

                                               x0
n
 + y0

n
 = ( x

n
 or y

n
 )                                            (13) 

 and correspondingly 𝜆n = (y
n
 or x

n
). It can be noticed that x0

n
 ≠ z

n-2∙y0
2
= y

n
 and           

y0
n
 ≠ z

n-2∙x0
2
 = x

n
  because of the lack of coincidence of decompositions in 

factorization of numbers   x0
n
 and  y

n
 ,   y0

n
 and  x

n
 . Obviously,   x0

n
 ≠ z

n-2∙x0
2
 and  y0

n
 

≠ z
n-2∙y0

2
 .  

        Let us show now that  x0
 
 and  y0  cannot be irrational in (13) on account of 

integer partition of  z
n
  into  x

n
  and  y

n
 . Here two cases can occur: when n is an odd 

number (designate it by 𝜈 = 𝑛odd ≥ 3)   and  when  n  is an even number (designate it 

by   𝜇 = neven ≥  4) . Considering the first case we find that  x0 and ,y0 cannot be 

irrational in (13) as irrational square roots do not give a rational number in sum.  

        Let us consider the second case when n =  𝜇. Indeed, from the one hand, there is 

Pythagorean triple of numbers z
m
,
  
x

m
, y

m
  with m = 𝜇/2 such that (z

m
)

2
 = (x

m
)

2
 + (y

m
)

2
. 

On the other hand, the initial equality can be written in the form   z
2
 = x0

2
 + y0

2
  

showing that the indicated triple of numbers corresponds to the triple  z ,  x0 ,    y0 

describing the like right-angled triangle. Therefore   z
m
/x

m
 = z/x0  ,  z

m
/y

m
 = z/y0  ,               

x
m 

= x0∙z
m-1

,    y
m  

= y0∙z 
m-1

    and  x0  and y0  are not irrational.    

        So, it was revealed, as a result of the previous calculation, that equality (13) 

consists of   whole numbers. Furthermore, Fermat’s triple obtained from them for the 
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given  n >2 ,  for example,   x0,  y0,  x,   is not the same   by value as Fermat’s triple     

x,  y,  z  from (7), since x0 / y0  ≠  x / y that is clear from the                               

following:  x0
2
/y0

2
 =  x

n
/y

n
  =  (x

2
/y

2
)(x

n-2
/y

n-2
) .                                                              

 Hence equality (13) represented in the form (12) describes another right-angled 

triangle different from that defined by Pythagorean triple   x0 ,  y0 ,  z .  

        Let us come back to the assumption at the beginning of the proof that integer 

solution (7) exists. This assumption is substantiated only when there is a concrete 

solution (13) in whole numbers. In order to check validity of (13) it is necessary to do 

the same discourse as before, since equations (7) and (13) are identical by their 

properties. This procedure can be continued to infinity in the direction of decreasing 

whole numbers under condition that sequence of different chained equalities never 

stops and numbers x0
2 
and y0

2
 in (12) will be always whole. If it is not so, i.e., x0

2 
  and   

y0
2 
 in chained equalities (13) turn out to be fractions, then this means that solution (7) 

does not exist in the system of right-angled numbers. Actually, since all partitions of 

the type (12) are built from the very beginning exclusively on the set of right-angled 

numbers’ squares being in fact whole items of finite series of partitions, then non-

whole  x0
2 

and y0
2 

 show pointlessness of such procedure, i.e., the absence of integer 

solution (7) or zero solution. On the other hand, infinite sequence of chained 

equalities (13) leads to infinite decreasing of positive whole numbers that is 

impossible and therefore assuming that there exists an integer solution of (7)   when  

n >2  is not true. Thus the theorem is proved both for all even and for all odd degrees 

of whole   numbers and for any finite whole x, y, z, d.   

3. Conclusion.  

        Returning to the full proof of Beal’s conjecture, let us note the important 

circumstance,  making possible to complete it, consisted in the true proof of Fermat’s 

Last Theorem as particular case of the considered conjecture. So, Beal’s Conjecture 
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led to solving the centuries-old problem of mankind and can be called rightfully 

Generalized Fermat’s Last Theorem in memory of the greatest discovery in the 

history of human science opening new ways in world cognition and understanding 

ancient knowledge by means of modern mathematical language [3;4;5].   
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