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AHHOTauMs: B 1aHHOW CTaThe MpemiaraeTcsi MaTeMaTUYEeCKOE PEIIEHUE THUITOTE3bI
busis, momydyeHHOE C MOMOIIBI0 METOJ0B apu(METHUECKOW Te€OMETPUHU, U3BECTHBIX
elle JPEBHUM MaTeMaTHKaM M Pa3BUTHIX aBTOPOM CTAaThbU. DTH METO/IbI BKIIOUAIOT B
ce0sl MOCTPOEHUE CTENEHEH IEeNbIX YKCeNl MOCPEACTBOM MPOIMOPIMMA, COCTAaBICHUE
pa3OueHnii U3 HUX, MacITaOMpOBAaHWE BBEPX M BHU3 MJISI TOTO, YTOOBI MOJIYYHTH
no/JI00HbIE paBHblE pa3dOueHus. B pesynbTaTe Takux NpeoOpa3oBaHUN ypaBHEHHE
buns cBoauTca kK ypaBHeHnro Depma, KOTOpoe HE UMMEET pPEUICHHUS B
MOJIOKUTENIbHBIX IEJBIX YHCIAX, YTO JOKa3bIBae€TCA TEMH JK€ METOoJaMu ¢
JOTIOJTHEHUEM MeTojla OeckoHeyHoro cmycka Pepma. JlaHHOe ucciaeaoBaHUe
BBITIOJTHEHO B YUCJIOBOUM CHUCTEME MPSIMOYTOJIbHBIX YKCEII, BBEAECHHBIX aBTOPOM, UTO
COOCTBEHHO W TPUBOJUT K OTKPBITHIO MaTEMaTHUUYECKOTO PEIICHUS THUIOTE3bl buis.

TekcT cTaThyl MPOMILTIOCTPUPOBAH M300paKEHUEM MOCTPOCHHSI LENbIX CTEIEHEH U3



MHOXKECTBA MMPAMOYTOJIbHBIX YUCCI, PaCIIOJIOKCHHBIX Ha auarpamme
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Abstract: The given article suggests a mathematical solution of the Beal Conjecture
obtained by arithmetic geometry methods known yet to ancient mathematician
and developed by the author. These methods include constructing powers of whole
numbers by means of proportions, making up partitions from them, their scaling-up
and scaling-down in order to get equal similar partitions. As a result of such
transformations, the Beal equation comes to the Fermat equation, which has no
solution in positive whole numbers that is proved by the same methods plus Fermat’s
method of infinite descent. The given research is fulfilled in the system of right-
angled numbers introduced by the author and leading to the mathematical discovery
of Beal’s Conjecture solution. The text is illustrated by the picture of constructing
whole powers from the set of right-angled numbers on the diagram of Euclid’s

geometrical theorem.
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1. Introduction. Beal’s Conjecture as generalized Fermat’s Last Theorem

(formulation of the problem).

Beal’s Conjecture [1] deals with arbitrary powers of whole numbers except the
second combined in one equation similarly to the well-known equation of Fermat’s
Last Theorem. The Beal proposition can be solved by the ancient Greek arithmetic

geometry methods applied successfully as well to the Fermat problem [2]. Among all



well-known mathematics conjectures Beal’s Conjecture is occupying a peculiar place
being a generalization of Fermat’s Last Theorem [1]. However the generalization in
[1] concerns only the formal record of this conjecture and does not summarize the
methods of proving Fermat’s Last Theorem. On the contrary, the Beal conjecture
comes to the Fermat problem considered as an arithmetic geometry problem with
elements of combinatorics and has easy simple solution obtained by additive number
theory methods apparently available to ancient mathematicians and Fermat too [2].
The suggested proof of Beal’s Conjecture can be related to the part of number theory
defined as arithmetic algebraic geometry in spite of that it can be acquired by means

of elementary arithmetic operations [3].

Pierre de Fermat formulated his famous proposition on the margin of Diophantus’
“Arithmetic” [2] (near the task 8 of the book I1). The eighth problem of the second
book asks to separate a square into two squares in whole numbers. It was known long
ago that this problem has an infinite set of solutions. But Fermat generalized the task
in case of any whole power above the second and pointed out at impossibility of such
partition in whole numbers claiming here that he found a “miraculous” proof of this
proposition.

How could Fermat solve the unique problem straight off and without a shadow of
doubt ? The sole reason for it is that he could see the mental picture of his proof. Such
a picture emerged in his consciousness during his insight allowing him to investigate
instantly all necessary details of solution [4]. Visual image of the problem must have
had a geometrical form, which apparently could not take its place on narrow margins.
This geometric pattern serves as general illustration for Euclid’s theorem about
proportional means, from which formulation of Pythagorean theorem and Fermat’s
proposition (called Fermat’s Last Theorem later on) could be easily derived. Fig. 1 [3]
shows stylized design of Euclid’s geometrical theorem on the fractal surface of similar
right angle triangles at an instantaneous position of the small diameter of Fig. 1

shifting from state @, to state @,.



7 I
N Q |1
\
(P\
(O o
Xo

Fig. 1 (the designations are explained in the text)

Let us proceed following Fermat’s mental investigation of Pythagorean theorem
and its generalizations in the case of any n-th degree on splitting higher whole powers
into two powers of the same degree. Ancient Greek mathematicians could solve some
algebraic equations with only arithmetic methods on the basis of Euclidean geometry,
so that they might be called arithmetic geometry methods and included into the range
of modern arithmetic algebraic geometry. Of course, Fermat knew about these ancient
methods and could develop them using his visual observation of such properties of
geometrical figures that became origins for future algebraic notions. But Fermat did
not produce new terminology and formulated his research results in pure arithmetic
manner. Moreover, his perception of n-th degrees of whole powers was related to
Cartesian product of whole numbers from n-dimensional arithmetic space and then
each n-th power could be represented as a collection of n-dimensional unit cubes

transferred from the state @, to the state ®, one by one on the diagram of Fig. 1. This
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procedure serves as well for finding Pythagorean triples by the method of sorting
square units one by one in Pythagorean equation. This method can be applied also to
the equation of generalized Fermat’s Last Theorem in order to show that splitting of n-

th power of whole numbers into two other powers with n > 2 is impossible.
2. Solution of Beal’s Conjecture and Fermat’s Last Theorem.
The Beal Conjecture states [1]:

The equation A* + B’ = C? has no solution in positive integers A, B, C, X, y, and z

with x, y, and z at least 3 and A,B, and C coprime.
Or, restated [1]:

Let A, B, C, X, Y, and z be positive integers with x, y, z> 2. If A* + B/ = C?, then

A, B, and C have a common factor.
Let us rewrite hypothetical Beal’s Conjecture equality in the following way:
X' +y' =7 (1)

with positive integers x, Yy, z having a common factor and exponent n taking

simultaneously the next spectrum of values: n =(p, g, m), where integers p, g, m

at least 3 and n has one independent value for each term. So we assume at the
beginning that equality (1) exists and partitions of the type (1) can be obtained. This
method of proof is related to plausible reasoning and called the rule of contraries.

Then one can explore some arbitrary solutions of equation (1) in whole numbers.

n

Consider equality (1) as a partition of whole number z" into two whole parts x
and y". It resembles Pythagorean equation in real numbers, if we could bring powers
in (1) to the degree 2 with whole parts in the similar partition: 22 = X"/ 2" + y"/ 2"2.
For example, the sacred Egyptian triangle corresponds to the equality: 25 = 16 + 9,
that comes of the application of Euclid’s geometrical theorem (see Fig. 1): z =k +1,

=zk+z1=x+y,’, 5=16/5+9/5, 5% = 4* + 3%. To produce such scaling, let us



introduce the notion of right-angled numbers (these numbers are different from so

called right angle triangle numbers representing Pythagorean triples).

Definition. Right-angled number is such a non-negative real number, the square of

which is a whole non-negative number.

The set of right-angled numbers P ={0, 1,Vv2, V3, 2, \5, ...} is countable. The
system of right-angled numbers P = (P,+,-,0,1) is defined by operations of addition
and multiplication and two singled out elements (zero and unit). The system P is non-
closed in relation to addition. Notice that the set of non-negative whole numbers is a
subset of the set of right-angled numbers. Then consider (1) on the 2-dimensional
lattice of right-angled numbers with coordinates X, , Y., and that, which we call the
norms of a right-angled number z assigned to different pairs (X, , Yo) and differing
from each other by the value of its summands: z* = x> + Y, (for Egyptian triangle
there are 25 such norms: 25 =1 + 24 =2 + 23 = ...). The norm of non-zero right-
angled numbers is always whole and cannot be less than 1. Whole numbers x,° and
Yo~ run through values from 1 to z* and from z* to 1 one by one. So number z has z*
different partitions as its norms. Similarly any whole power of whole numbers could
be expanded to the sum of whole numbers with the aid of right-angled numbers, if we
choose the needed common factor in (1). It corresponds to the initial formulation of
the problem upon condition that powers in (1) consist of indivisible units. All other
possibilities to represent degrees of whole powers using other number systems (for
example, rational number systems) are excluded as irrelevant to the formulated

problem.

For the purpose of reducing (1) to the view of Pythagorean equation in the
system of right-angled numbers, one can rewrite (1) as an equality for some coprime
x’, y’, z’, and common whole factor d: (x’'d)® + (v'd)® = (z’d)™ and fulfil scaling-

down:
Edf=xdPl zd" + d ] @d" = )P AP @)+ ()T @)™
= Xo° + Yoo , Where x,~ and y,> with appropriate d are squares of some right-angled
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numbers X, and y,. If exponents p and q equal m, then d® can be (z’)*™*. In other
words, we seek such d that satisfy the above stated condition to get whole parts in the
sum of this equality. It assumes the following view of (1) after fulfilling scaling-up:

M =Xy =" (% + Vo) )

Let us apply now the ancient method of making powers using Euclid’s
geometrical theorem [2] and produce two chains of proportions connected with each

other with some equality presenting integer z as a sum of two whole numbers:
Z/Xo = Xo/K = klky = ... = ki 3/Km 2 (3)
Z/yo = yO/I = |/|1 =..= lm,gllm,z

where z, X,, Y, are right-angled numbers from (2), m natural index at least 3,and
z=k +1; k and | are some whole parts of z taken from the method of scaling-down

(see below).

From proportions (3) one can obtain the next formulae:
Xo =kz = (Kiz IXo)Z , Xoo = KaZ® = (KoZ IX0)Z% , ..., Xo" = Kmo 2™, (4)

Vol =lz=(lizlyo)z, Vo' = > = (lz IYo)Z%, ..., Yo" = lmo 2™,

where integers k and | are found from the basic equality (1):

z=(zd) =xd"/(zd"" + d" /zd" =P d P + 5)0d Y™
=k+1

If exponents p and g more or equal m, then numbers k and | are whole with d = (z*)™*

as a minimum (d can be some whole number divisible by this minimum).
From (2) and (4) we get equal similar partitions of z" into two whole parts:
Zm — Xp + yq - Zm—Z(XOZ + yOZ) — Xm + ym’ (5)

hence x* = (x*™™ = x™ y* = (y¥™™ = y™ with whole x, y by construction (for
simplicity we do not change here the designations for x, y although exponents p and g

are tuple to m). Square roots of x™, y™ are mean proportionals between x,> and ™,
7
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Voo and z™2 describing a bigger right angle triangle defined by the hidden
Pythagorean equality z" = x™ + y™ found from the relations: x™ = k 2™, y™ = | Z™*
This implicit triangle is similar to that with sides z, X, , Y, represented by equality z2

= on + YOZ-
So (1) comes to the Fermat equality in right-angled numbers:
X"+y"=7" m=>3 (6)

with whole x =xd, y=y’d, z=1zd, and d as some whole factor that can be
expanded into the product of prime factors. One can prove Fermat’s Last Theorem
now with the same methods as above in order to obtain solution of the Beal

Conjecture in full and one measure.
Let us write Fermat’s Last Theorem in its usual form:
"=x"+y", n>2 (7)

Suppose that one solution at least was found. Then we shall try to construct such a
solution and make certain of its impossibility. We shall work in the system of right-

angled numbers (see above Definition).

Consider (7) on the 2-dimensional lattice of right-angled numbers with right-
angled coordinates X, , Yo and corresponding norm z* = x,°> + y,° differing by its
square fragments relating to definite right-angled coordinates and being a partition of
number Z* into two summands represented by non-negative whole numbers. The

minimal (non-zero) norm (standard) of right-angled numbers equals 1.

To construct powers of whole numbers presented in (7), let us produce two
chains of continued proportions connected with each other by the norm

2" =Xy + Yo

Z/Xo = Xo/k = k/kl = .. = kn_3/kn_2



Z/yQ = yoll = |/|1 = .= ln,glln,z (8)

where natural indices of the last terms of each chain in (8) are obtained from n > 2.

Continued proportions (8) yield the following formulae:

kz = on, k]_Z = Xok, ng = Xokl, cees kn_22 = Xokn_3

Iz = YOZ, 11z = yol, 122 = yoly, ..., 1h-2Z = Yolns (9)

o> = kz =(Kiz 1%0)z, Xo° = kiz? =(koZ I%0)Z, ..., Xo" = Kn.oZ™?

vor=lz=(liz o)z, Yo'=hz? =(lz Iyo)2%, ... , Yo" = lnoz™* (10)

It is necessary now to fix the norm for the partition of z" into two like powers in
(7). As in the case of Beal’s Conjecture, let us assume that z, X, y in presupposed
equality (7) have a common factor d, i.e.,z = (z'd), x = (x’d), y = (y’'d), where z’, x’.

y’ coprime. Thereupon divide equality (7) by z"* and get:

z=(z'd) = (x'd)"/z’d"" + (y'd)" /(z’d)"" =k + |, where k and | integers
with d = ()" as a minimum. From this and (9)-(10) it follows that 2% = x;* + Yo

and 2" =2"% (xo® + Yo’ ) is a scaled-up modification of the norm z% = x> + yy’ .

Further, one can obtain a singular partition of z" into three terms from (10) for

the given normwhenn > 2 :



Z"=Xo +Yo + A (11)

where 1, = 2" [ (K — ko) + (1 - 1.2) ] is a remainder after subtracting x," and y," out

of 2" suchthat A,>0whenn>2and XoYo#0, 4,=0whenn=2and XYy #0,

Xo. Yo.€ [0, 2], z € (0, ).

Thus there exists one-to-one correspondence between each pair of numbers (Xo
yo) With norm z2 = x,° + yo° from 2-dimensional arithmetic space and each
corresponding partition of any whole power with n > 2 of integer z from n-
dimensional arithmetic space into the sum of the same powers of numbers X, Yo and
remainder A, from (11). Isomorphism (one-to-one correspondence) between the set of
points of 2-dimensional Euclidean space with position vector length z and coordinates
Xo Yo, the set of partitions of z* into squares, and the sets of partitions (11) for any

whole n > 2 can be written as follows :
{Z=> (xo,yo)} o { 22=x02+y02}<—>{z”=x0”+y0”+ﬂn}’

where sets of partitions are generated by the next power similarities:

z<—>22<—>2n, Xo € X02<—>Xon, yo<—>y02‘—’y0n-

Partitions (11) can be reduced to the norm, from which they were obtained:

=% Y F L= (X Yy )= X+ (12)
Formula (12) represents by itself a combinatorial equality of two partitions in three
and two terms because of the one-to-one correspondence between pairs (Xo = Yo) and
presupposed partition (7). It means that partition (11) coincides with partition (7) if
the latter exists. In the case of right-angled numbers this equality is realized only if xq
Yo integers. Algorithm of such correspondence is given in the next formula (13). Thus
scaling invariance of the norm z% = ( x,®> + Yo’ ) leads to the following equalities of

different fragments of partitions (12):
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Xo" + Yo" =(x"ory") (13)

and correspondingly A, = (y" or x"). It can be noticed that X" # z"%y,’= y" and
Vo # 2"%xe? = X" because of the lack of coincidence of decompositions in

factorization of numbers x," and y", yo" and x". Obviously, Xo" # z"%x> and yq" #
n-2., 2

7Y

Let us show now that xo and y, cannot be irrational in (13) on account of
integer partition of z" into x" and y". Here two cases can occur: when n is an odd
number (designate it by v = nyqg > 3) and when n is an even number (designate it

by U = Neen = 4) . Considering the first case we find that X, and Yy, cannot be

irrational in (13) as irrational square roots do not give a rational number in sum.

Let us consider the second case when n = u. Indeed, from the one hand, there is
Pythagorean triple of numbers z", x™, y™ with m = /2 such that (z™)? = (x™)? + (y™)%
On the other hand, the initial equality can be written in the form 722 = x® + Yo’
showing that the indicated triple of numbers corresponds to the triple z, X, Vo
describing the like right-angled triangle. Therefore z"/X™ = z/x, , Z"W" = zly, |

1

X"=xoz™, y"=yez™! and x, andy, are not irrational.

So, it was revealed as a result of the previous calculation that equality (13)
consists of whole numbers. Furthermore, Fermat’s triple obtained from them for the
given n >2, for example, Xo, Yo, X, Iisnotthe same by value as Fermat’s triple
X, 'y, z from (7), since X0 / Yo # x / y that is clear from the

following: Xofyo® = X"y" = ()X y™?) .
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Hence equality (13) represented in the form (12) describes another right-angled

triangle different from that defined by Pythagorean triple Xo, Yo, Z.

Let us come back to the assumption at the beginning of the proof that integer
solution (7) exists. This assumption is substantiated only if there is a concrete
solution (13) in whole numbers. In order to check the validity of (13) it is necessary
to construct it with the same reasoning as before, since equations (7) and (13) are
identical by their properties. This procedure can be continued to infinity in the
direction of decreasing whole numbers under condition that sequence of different
chained equalities never stops and numbers x,” and y,” in (12) will be always whole.
If it is not so, i.e., x> and Yo® in chained equalities (13) turn out to be fractions,
then this means that solution (7) does not exist in the system of right-angled numbers.
Actually, since all partitions of the type (12) are built from the very beginning
exclusively on the set of right-angled numbers’ squares being in fact whole items of
finite series of partitions, then non-whole Xo> and yo2 show pointlessness of such
procedure, i.e., the absence of integer solution (7) or zero solution. On the other hand,
infinite sequence of chained equalities (13) leads to infinite decreasing of positive
whole numbers that is impossible and therefore assuming that there exists an integer
solution of (7) when n >2 is not true. Thus the theorem is proved both for all even

and for all odd degrees of whole numbers and for any finite whole x, y, z, d.
3. Conclusion.

Beal’s Conjecture solution contains in itself the description of a new
hypothetical mathematical object with simple properties conditioned only by its
intrinsic structure. One can see this structure formed from similar right angle triangles
obtained with the aid of Pythagorean triples z , X, , Yo characterizing hypothetical
partition (7) on the diagram of Fig. 1 taken from [3]. This hypothetical mathematical
object represents by itself a closed cycle of identical transformations of one and the

same partition 2" =x"+y":
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"=x"+y" < I"=(X"+VYo )+

\) T

Zn — Zn-2 (X02 + yoz) N Zn — Xon + yon + /1n

Equality of the above partitions is substantiated only by suggestion that whole power
n >2 can be divided into two whole parts that leads automatically to similarity and
equality in itself of one and the same partition given in the form of two or three

terms.

However generalized Fermat’s Last Theorem states that it is impossible to
construct partition (1) or (7) into other n-th powers of whole numbers when n >2,
Applying the rule of contraries we claim that if such partitions exist then partitions
(13) exist as well. Construction of (13) leads in total to a zero result and therefore
generalized Fermat’s Last Theorem can be regarded as a mathematical discovery

running ahead of its proof.

Beal’s Conjecture can be also considered at the level of metamathematics when
it is necessary to choose an adequate number system for solution of this problem. In
the given case such an adequate number system was the system of right-angled
numbers. This system have many interesting applications in natural sciences [3;5;6].
In particular, it participates in forming a surface fractal consisted of decreasing right-

angled triangles and revealed in quantum physics applications [6].

In conclusion we suppose that contemporary theoretical science seemed to be
exhausted in its description of real world and new alternative bases of physics,
chemistry, and other disciplines should be searched. These bases can be found by
studying the diagram of Fig.1l representing kinematics and dynamics of any

interaction processes in nature. One can begin for example at that all school
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trigonometry can be considered and described in visual language of potential

geometrical constructions of Fig.1.
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